Cargando…

Endocytosis of junctional cadherins in bovine kidney epithelial (MDBK) cells cultured in low Ca2+ ion medium

The release of intercellular contacts in MDBK cells, initiated by the depletion of Ca2+ ions from the culture medium, results in the endocytotic uptake of membrane vesicles containing specific membrane constituents of the zonula adhaerens (ZA). During this process the junction-derived, endocytosed v...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288996/
https://www.ncbi.nlm.nih.gov/pubmed/2026652
Descripción
Sumario:The release of intercellular contacts in MDBK cells, initiated by the depletion of Ca2+ ions from the culture medium, results in the endocytotic uptake of membrane vesicles containing specific membrane constituents of the zonula adhaerens (ZA). During this process the junction-derived, endocytosed vesicles remain associated with the ZA plaque components, while the plaque and its attached actin filaments retract as a whole in a ring-like fashion from the plasma membrane, often accumulating, usually in fragments, in the juxtanuclear cytoplasm. Double-label immunofluorescence microscopy with antiplakoglobin and antivinculin has indicated that both plaque proteins colocalize with the hallmark membrane glycoprotein of this junction type, E-cadherin (uvomorulin). When HRP used as a fluid phase marker is applied to the culture medium, simultaneously with the Ca2+ ion-chelator EGTA, numerous HRP-positive vesicles are found in close association with the dislocated plaque material, suggesting that the HRP is contained in the vesicles formed upon EGTA-induced junction splitting. Immunoelectron microscopy with various cadherin-specific antibodies revealed vesicle-associated labeling, confirming the derivation of these plaque-associated vesicles from the ZA. As the desmosome-specific cadherin, desmoglein, is recovered in another type of junction-derived vesicle, which is characterized by its association with a desmoplakin-plaque, we conclude that the membrane domains of both kinds of junction are endocytosed during Ca2+ depletion but stay in different vesicle populations, emphasizing the selective interaction of the specific cadherins with their respective plaque and filament partners.