Cargando…

Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor

Basic fibroblast growth factor, a potent angiogenesis inducer, stimulates urokinase (uPA) production by vascular endothelial cells. In both basic fibroblast growth factor-stimulated and -nonstimulated bovine capillary endothelial and human umbilical vein endothelial cells single-chain uPA binding is...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289004/
https://www.ncbi.nlm.nih.gov/pubmed/1645739
Descripción
Sumario:Basic fibroblast growth factor, a potent angiogenesis inducer, stimulates urokinase (uPA) production by vascular endothelial cells. In both basic fibroblast growth factor-stimulated and -nonstimulated bovine capillary endothelial and human umbilical vein endothelial cells single-chain uPA binding is mediated by a membrane protein with a Mr of 42,000. Exposure of bovine capillary or endothelial human umbilical vein endothelial cells to pmolar concentrations of basic fibroblast growth factor results in a dose-dependent, protein synthesis-dependent increase in the number of membrane receptors for uPA (19,500-187,000) and in a parallel decrease in their affinity (KD = 0.144-0.790 nM). With both cells, single-chain uPA binding is competed by synthetic peptides whose sequence corresponds to the receptor-binding sequence in the NH2-terminal domain of uPA. Exposure of bovine capillary endothelial cells to transforming growth factor beta 1, which inhibits uPA production and upregulates type 1 plasminogen activator inhibitor, the major endothelial cell plasminogen activator inhibitor, has no effect on uPA receptor levels. These results show that basic fibroblast growth factor, besides stimulating uPA production by vascular endothelial cells, also increases the production of receptors, which modulates their capacity to focalize this enzyme on the cell surface. This effect may be important in the degradative processes that occur during angiogenesis.