Cargando…

J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth

The influence of J1/tenascin adsorbed to polyornithine-conditioned plastic (substrate-bound J1/tenascin) and J1/tenascin present in the culture medium (soluble J1/tenascin) on neurite outgrowth was studied with cultured single cells from hippocampus and mesencephalon of embryonic rats. Neurons at lo...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289012/
https://www.ncbi.nlm.nih.gov/pubmed/1710226
_version_ 1782152160249643008
collection PubMed
description The influence of J1/tenascin adsorbed to polyornithine-conditioned plastic (substrate-bound J1/tenascin) and J1/tenascin present in the culture medium (soluble J1/tenascin) on neurite outgrowth was studied with cultured single cells from hippocampus and mesencephalon of embryonic rats. Neurons at low density grew well on J1/tenascin substrates and extended neurites that were approximately 40% longer than on the polyornithine control substrate after 24 h in vitro. The neurite outgrowth promoting effect of substrate bound J1/tenascin was largely abolished in the presence of mAb J1/tn2, but not by mAb J1/tn1. In contrast to the neurite growth-promoting effects of substrate bound J1/tenascin, neurite outgrowth on polyornithine, laminin, fibronectin, or J1/tenascin as substrates was inhibited by addition of soluble J1/tenascin to the cultures. Neither of the two mAbs neutralized the neurite outgrowth-inhibitory properties of soluble J1/tenascin. In contrast to their opposite effects on neurite outgrowth, both substrate- bound and soluble J1/tenascin reduced spreading of the neuronal cell bodies, suggesting that the neurite outgrowth-promoting and antispreading effects are mediated by two different sites on the molecule. This was further supported by the inability of the mAb J1/tn2 to neutralize the antispreading effect. The J1/tn2 epitope localizes to a fibronectin type III homology domain that is presumably distinct from the putative Tn68 cell-binding domain of chicken tenascin for fibroblasts, as shown by electronmicroscopic localization of antibody binding sites. We infer from these experiments that J1/tenascin contains a neurite outgrowth promoting domain that is distinguishable from the cell-binding site and presumably not involved in the inhibition of neurite outgrowth or cell spreading. Our observations support the notion that J1/tenascin is a multifunctional extracellular matrix molecule.
format Text
id pubmed-2289012
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22890122008-05-01 J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth J Cell Biol Articles The influence of J1/tenascin adsorbed to polyornithine-conditioned plastic (substrate-bound J1/tenascin) and J1/tenascin present in the culture medium (soluble J1/tenascin) on neurite outgrowth was studied with cultured single cells from hippocampus and mesencephalon of embryonic rats. Neurons at low density grew well on J1/tenascin substrates and extended neurites that were approximately 40% longer than on the polyornithine control substrate after 24 h in vitro. The neurite outgrowth promoting effect of substrate bound J1/tenascin was largely abolished in the presence of mAb J1/tn2, but not by mAb J1/tn1. In contrast to the neurite growth-promoting effects of substrate bound J1/tenascin, neurite outgrowth on polyornithine, laminin, fibronectin, or J1/tenascin as substrates was inhibited by addition of soluble J1/tenascin to the cultures. Neither of the two mAbs neutralized the neurite outgrowth-inhibitory properties of soluble J1/tenascin. In contrast to their opposite effects on neurite outgrowth, both substrate- bound and soluble J1/tenascin reduced spreading of the neuronal cell bodies, suggesting that the neurite outgrowth-promoting and antispreading effects are mediated by two different sites on the molecule. This was further supported by the inability of the mAb J1/tn2 to neutralize the antispreading effect. The J1/tn2 epitope localizes to a fibronectin type III homology domain that is presumably distinct from the putative Tn68 cell-binding domain of chicken tenascin for fibroblasts, as shown by electronmicroscopic localization of antibody binding sites. We infer from these experiments that J1/tenascin contains a neurite outgrowth promoting domain that is distinguishable from the cell-binding site and presumably not involved in the inhibition of neurite outgrowth or cell spreading. Our observations support the notion that J1/tenascin is a multifunctional extracellular matrix molecule. The Rockefeller University Press 1991-06-01 /pmc/articles/PMC2289012/ /pubmed/1710226 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
title J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
title_full J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
title_fullStr J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
title_full_unstemmed J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
title_short J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
title_sort j1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289012/
https://www.ncbi.nlm.nih.gov/pubmed/1710226