Cargando…

Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions

T cell adhesion to endothelium is critical to lymphocyte recirculation and influx into sites of inflammation. We have systematically analyzed the role of four receptor/ligand interactions that mediate adhesion of peripheral human CD4+ T cells to cultured human umbilical vein endothelial cells (HUVEC...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289015/
https://www.ncbi.nlm.nih.gov/pubmed/1710227
Descripción
Sumario:T cell adhesion to endothelium is critical to lymphocyte recirculation and influx into sites of inflammation. We have systematically analyzed the role of four receptor/ligand interactions that mediate adhesion of peripheral human CD4+ T cells to cultured human umbilical vein endothelial cells (HUVEC): T cell LFA-1 binding to ICAM-1 and an alternative ligand ("ICAM-X"), T cell VLA-4 binding to VCAM-1, and T cell binding to ELAM-1. Contributions of these four pathways depend on the activation state of both the T cell and HUVEC, and the differentiation state of the T cell. ELAM-1 plays a significant role in mediating adhesion of resting CD4+ T cells to activated HUVEC. LFA-1 adhesion dominates with PMA-activated T cells but the strength and predominant LFA-1 ligand is determined by the activation state of the HUVEC; while ICAM-1 is the dominant ligand on IL-1-induced HUVEC, "ICAM- X" dominates binding to uninduced HUVEC. Adhesion via VLA-4 depends on induction of its ligand VCAM-1 on activated HUVEC; PMA activation of T cells augments VLA-4-mediated adhesion, both in the model of T/HUVEC binding and in a simplified model of T cell adhesion to VCAM-1- transfected L cells. Unlike LFA-1 and VLA-4, ELAM-1-mediated adhesion is not increased by T cell activation. Differential expression of adhesion molecules on CD4+ T cell subsets understood to be naive and memory cells also regulates T/HUVEC adhesion. Naive T cell adhesion to HUVEC is mediated predominantly by LFA-1 with little or no involvement of the VLA-4 and ELAM-1 pathways. In contrast, memory T cells bind better to HUVEC and utilize all four pathways. These studies demonstrate that there are at least four molecular pathways mediating T/HUVEC adhesion and that the dominance/hierarchy of these pathways varies dramatically with the activation state of the interacting cells and the differentiation state of the T cell.