Cargando…

Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions

After skeletal muscle is denervated, fibroblasts near neuromuscular junctions proliferate more than fibroblasts distant from synaptic sites, and they accumulate adhesive molecules such as tenascin (Gatchalian, C. L., M. Schachner, and J. R. Sanes. 1989. J. Cell Biol. 108:1873-1890). This response co...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289028/
https://www.ncbi.nlm.nih.gov/pubmed/1904446
_version_ 1782152164055973888
collection PubMed
description After skeletal muscle is denervated, fibroblasts near neuromuscular junctions proliferate more than fibroblasts distant from synaptic sites, and they accumulate adhesive molecules such as tenascin (Gatchalian, C. L., M. Schachner, and J. R. Sanes. 1989. J. Cell Biol. 108:1873-1890). This response could reflect signals that arise perisynaptically after denervation, preexisting differences between perisynaptic and extrasynaptic fibroblasts, or both. Here, we describe a line of transgenic mice in which patterns of transgene expression provide direct evidence for differences between perisynaptic and extrasynaptic fibroblasts in normal muscle. Transgenic mice were generated using regulatory elements from a major histocompatibility complex (MHC) class I gene linked to the Escherichia coli beta- galactosidase (lacZ) gene. Expression of lacZ was detected histochemically. In each of eight lines, lacZ was detected in different subsets of cells, none of which included lymphocytes. In contrast, endogenous MHC is expressed in most tissues and at high levels in lymphocytes. Thus, the MHC gene sequences appeared inactive in the transgene, and lacZ expression was apparently controlled by genomic regulatory elements that were specific for the insertion site. In one line, cells close to the neuromuscular junction were lacZ positive in embryonic and young postnatal mice. Electron microscopy identified these cells as fibroblasts and Schwann cells associated with motor nerve terminals, as well as endoneurial fibroblasts, perineurial cells, and Schwann cells in the distal branches of motor nerves. No intramuscular cells greater than 200 microns from synaptic sites were lacZ positive. These results indicate that there are molecular differences between perisynaptic and extrasynaptic fibroblasts even in normal muscle and that diverse perisynaptic cell types share a specific pattern of gene expression.
format Text
id pubmed-2289028
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22890282008-05-01 Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions J Cell Biol Articles After skeletal muscle is denervated, fibroblasts near neuromuscular junctions proliferate more than fibroblasts distant from synaptic sites, and they accumulate adhesive molecules such as tenascin (Gatchalian, C. L., M. Schachner, and J. R. Sanes. 1989. J. Cell Biol. 108:1873-1890). This response could reflect signals that arise perisynaptically after denervation, preexisting differences between perisynaptic and extrasynaptic fibroblasts, or both. Here, we describe a line of transgenic mice in which patterns of transgene expression provide direct evidence for differences between perisynaptic and extrasynaptic fibroblasts in normal muscle. Transgenic mice were generated using regulatory elements from a major histocompatibility complex (MHC) class I gene linked to the Escherichia coli beta- galactosidase (lacZ) gene. Expression of lacZ was detected histochemically. In each of eight lines, lacZ was detected in different subsets of cells, none of which included lymphocytes. In contrast, endogenous MHC is expressed in most tissues and at high levels in lymphocytes. Thus, the MHC gene sequences appeared inactive in the transgene, and lacZ expression was apparently controlled by genomic regulatory elements that were specific for the insertion site. In one line, cells close to the neuromuscular junction were lacZ positive in embryonic and young postnatal mice. Electron microscopy identified these cells as fibroblasts and Schwann cells associated with motor nerve terminals, as well as endoneurial fibroblasts, perineurial cells, and Schwann cells in the distal branches of motor nerves. No intramuscular cells greater than 200 microns from synaptic sites were lacZ positive. These results indicate that there are molecular differences between perisynaptic and extrasynaptic fibroblasts even in normal muscle and that diverse perisynaptic cell types share a specific pattern of gene expression. The Rockefeller University Press 1991-06-02 /pmc/articles/PMC2289028/ /pubmed/1904446 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
title Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
title_full Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
title_fullStr Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
title_full_unstemmed Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
title_short Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
title_sort integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289028/
https://www.ncbi.nlm.nih.gov/pubmed/1904446