Cargando…
Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine
Overall autophagy was measured in isolated hepatocytes as the sequestration and lysosomal hydrolysis of electroinjected [14C]lactose, using HPLC to separate the degradation product [14C]glucose from undegraded lactose. In addition, the sequestration step was measured separately as the transfer from...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289037/ https://www.ncbi.nlm.nih.gov/pubmed/1904444 |
_version_ | 1782152166337675264 |
---|---|
collection | PubMed |
description | Overall autophagy was measured in isolated hepatocytes as the sequestration and lysosomal hydrolysis of electroinjected [14C]lactose, using HPLC to separate the degradation product [14C]glucose from undegraded lactose. In addition, the sequestration step was measured separately as the transfer from cytosol to sedimentable cell structures of electroinjected [3H]raffinose or endogenous lactate dehydrogenase (LDH; in the presence of leupeptin to inhibit lysosomal proteolysis). Inhibitor effects at postsequestrational steps could be detected as the accumulation of autophaged lactose (which otherwise is degraded intralysosomally), or of LDH in the absence of leupeptin. Asparagine, previously shown to inhibit autophagic but not endocytic protein breakdown, strongly suppressed the autophagic hydrolysis of electroinjected lactose. Vinblastine, which inhibits both types of degradation, likewise suppressed lactose hydrolysis. Asparagine had little or no effect on sequestration, but caused an accumulation of autophaged LDH and lactose, indicating inhibition at a postsequestrational step. Neither asparagine nor vinblastine affected the degradation of intralysosomal lactose preaccumulated in the presence of the reversible lysosome inhibitor propylamine. However, if lactose was preaccumulated in the presence of asparagine, both asparagine and vinblastine suppressed its subsequent degradation. The data thus indicate that autophagic-lysosomal delivery, i.e., the transfer of autophaged material from prelysosomal vacuoles to lysosomes, is inhibited selectively by asparagine and non-selectively by vinblastine. |
format | Text |
id | pubmed-2289037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22890372008-05-01 Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine J Cell Biol Articles Overall autophagy was measured in isolated hepatocytes as the sequestration and lysosomal hydrolysis of electroinjected [14C]lactose, using HPLC to separate the degradation product [14C]glucose from undegraded lactose. In addition, the sequestration step was measured separately as the transfer from cytosol to sedimentable cell structures of electroinjected [3H]raffinose or endogenous lactate dehydrogenase (LDH; in the presence of leupeptin to inhibit lysosomal proteolysis). Inhibitor effects at postsequestrational steps could be detected as the accumulation of autophaged lactose (which otherwise is degraded intralysosomally), or of LDH in the absence of leupeptin. Asparagine, previously shown to inhibit autophagic but not endocytic protein breakdown, strongly suppressed the autophagic hydrolysis of electroinjected lactose. Vinblastine, which inhibits both types of degradation, likewise suppressed lactose hydrolysis. Asparagine had little or no effect on sequestration, but caused an accumulation of autophaged LDH and lactose, indicating inhibition at a postsequestrational step. Neither asparagine nor vinblastine affected the degradation of intralysosomal lactose preaccumulated in the presence of the reversible lysosome inhibitor propylamine. However, if lactose was preaccumulated in the presence of asparagine, both asparagine and vinblastine suppressed its subsequent degradation. The data thus indicate that autophagic-lysosomal delivery, i.e., the transfer of autophaged material from prelysosomal vacuoles to lysosomes, is inhibited selectively by asparagine and non-selectively by vinblastine. The Rockefeller University Press 1991-06-02 /pmc/articles/PMC2289037/ /pubmed/1904444 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
title | Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
title_full | Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
title_fullStr | Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
title_full_unstemmed | Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
title_short | Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
title_sort | inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289037/ https://www.ncbi.nlm.nih.gov/pubmed/1904444 |