Cargando…

Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis

Upon engagement of chemoattractant receptors, neutrophils generate inositol trisphosphate and diacylglycerol (DG) by means of a phosphatidylinositol-specific phospholipase C (PI-PLC) which is regulated by a GTP-binding protein(s). We have previously reported (Reibman, J., H. M. Korchak, L. B. Vossha...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289089/
https://www.ncbi.nlm.nih.gov/pubmed/1907286
_version_ 1782152176912564224
collection PubMed
description Upon engagement of chemoattractant receptors, neutrophils generate inositol trisphosphate and diacylglycerol (DG) by means of a phosphatidylinositol-specific phospholipase C (PI-PLC) which is regulated by a GTP-binding protein(s). We have previously reported (Reibman, J., H. M. Korchak, L. B. Vosshall, K. A. Haines, A. M. Rich, and G. Weissmann. 1988. J. Biol. Chem. 263:6322-6328) a biphasic rise in DG after exposure of neutrophils to the chemoattractant FMLP: a rapid (less than or equal to 15 s) phase ("triggering") and a slow (greater than or equal to 30 s) phase ("activation"). These derive from distinct intracellular lipid pools. To study the source of rapid and slow DG, we have used a unique probe, protein I, a porin that is the major outer membrane protein of Neisseria gonorrhoeae. Treatment of neutrophils with protein I inhibits exocytosis and homotypic cell adhesion provoked by FMLP without inhibiting assembly of the NADPH oxidase responsible for O2-. generation. DG turnover in PMN labeled with [3H]arachidonate and [14C]glycerol was profoundly altered by protein I. Whereas the rapid peak of DG was only modestly diminished (FMLP vs. FMLP plus protein I = DG labeled with [3H]arachidonic acid (3H-a.a.-DG): 142 +/- 14% SEM vs. 125 +/- 22%; DG labeled with the glycerol backbone with [14C]glycerol (D-14C-G): 125 +/- 10% SEM vs. 107 +/- 8.5% SEM), the slow rise in both 3H-a.a.-DG and D-14C-G was essentially abolished. Moreover, treatment of neutrophils with 4-4'- diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), which, like protein I, inhibits exocytosis without affecting O2-. generation also inhibited slow DG. However, protein phosphorylation and dephosphorylation (47phox, 66phox) were unaffected in the absence of slow DG. To determine the source of the slow DG, we have analyzed radiolabeled phospholipid (PL) turnover after FMLP +/- protein I (P.I.). Treatment of PMN with FMLP (0.1 microM) resulted in breakdown of phosphatidylcholine (PC), beginning at 30 s, and reaching a nadir at 60 s (3H-PC = 59 +/- 10.2% SEM of resting, 14C-PC = 57 +/- 6.4%). Protein I (0.25 microM) significantly inhibited PC turnover after FMLP ([3H]PC = 95 +/- 5.6% and [14C]PC = 86 +/- 8.4% of resting at 60 s), but failed to alter the metabolism of 3H- or 14C-phosphatidylinositol after FMLP (91 +/- 19.6 and 88 +/- 16.5% vs. 92 +/- 9.2 and 91 +/- 16% at 60 s).(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2289089
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22890892008-05-01 Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis J Cell Biol Articles Upon engagement of chemoattractant receptors, neutrophils generate inositol trisphosphate and diacylglycerol (DG) by means of a phosphatidylinositol-specific phospholipase C (PI-PLC) which is regulated by a GTP-binding protein(s). We have previously reported (Reibman, J., H. M. Korchak, L. B. Vosshall, K. A. Haines, A. M. Rich, and G. Weissmann. 1988. J. Biol. Chem. 263:6322-6328) a biphasic rise in DG after exposure of neutrophils to the chemoattractant FMLP: a rapid (less than or equal to 15 s) phase ("triggering") and a slow (greater than or equal to 30 s) phase ("activation"). These derive from distinct intracellular lipid pools. To study the source of rapid and slow DG, we have used a unique probe, protein I, a porin that is the major outer membrane protein of Neisseria gonorrhoeae. Treatment of neutrophils with protein I inhibits exocytosis and homotypic cell adhesion provoked by FMLP without inhibiting assembly of the NADPH oxidase responsible for O2-. generation. DG turnover in PMN labeled with [3H]arachidonate and [14C]glycerol was profoundly altered by protein I. Whereas the rapid peak of DG was only modestly diminished (FMLP vs. FMLP plus protein I = DG labeled with [3H]arachidonic acid (3H-a.a.-DG): 142 +/- 14% SEM vs. 125 +/- 22%; DG labeled with the glycerol backbone with [14C]glycerol (D-14C-G): 125 +/- 10% SEM vs. 107 +/- 8.5% SEM), the slow rise in both 3H-a.a.-DG and D-14C-G was essentially abolished. Moreover, treatment of neutrophils with 4-4'- diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), which, like protein I, inhibits exocytosis without affecting O2-. generation also inhibited slow DG. However, protein phosphorylation and dephosphorylation (47phox, 66phox) were unaffected in the absence of slow DG. To determine the source of the slow DG, we have analyzed radiolabeled phospholipid (PL) turnover after FMLP +/- protein I (P.I.). Treatment of PMN with FMLP (0.1 microM) resulted in breakdown of phosphatidylcholine (PC), beginning at 30 s, and reaching a nadir at 60 s (3H-PC = 59 +/- 10.2% SEM of resting, 14C-PC = 57 +/- 6.4%). Protein I (0.25 microM) significantly inhibited PC turnover after FMLP ([3H]PC = 95 +/- 5.6% and [14C]PC = 86 +/- 8.4% of resting at 60 s), but failed to alter the metabolism of 3H- or 14C-phosphatidylinositol after FMLP (91 +/- 19.6 and 88 +/- 16.5% vs. 92 +/- 9.2 and 91 +/- 16% at 60 s).(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1991-08-01 /pmc/articles/PMC2289089/ /pubmed/1907286 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis
title Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis
title_full Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis
title_fullStr Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis
title_full_unstemmed Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis
title_short Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis
title_sort effects of protein i of neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase c is associated with exocytosis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289089/
https://www.ncbi.nlm.nih.gov/pubmed/1907286