Cargando…
Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin
Alpha-actinin can be proteolytically cleaved into major fragments of 27 and 53 kD using the enzyme thermolysin. The 27-kD fragment contains an actin-binding site and we have recently shown that the 53-kD fragment binds to the cytoplasmic domain of beta 1 integrin in vitro (Otey, C. A., F. M. Pavalko...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289090/ https://www.ncbi.nlm.nih.gov/pubmed/1907287 |
_version_ | 1782152177151639552 |
---|---|
collection | PubMed |
description | Alpha-actinin can be proteolytically cleaved into major fragments of 27 and 53 kD using the enzyme thermolysin. The 27-kD fragment contains an actin-binding site and we have recently shown that the 53-kD fragment binds to the cytoplasmic domain of beta 1 integrin in vitro (Otey, C. A., F. M. Pavalko, and K. Burridge. 1990. J. Cell Biol. 111:721-729). We have explored the behavior of the isolated 27- and 53-kD fragments of alpha-actinin after their microinjection into living cells. Consistent with its containing a binding site for actin, the 27-kD fragment was detected along stress fibers within 10-20 min after injection into rat embryo fibroblasts (REF-52). The 53-kD fragment of alpha-actinin, however, concentrated in focal adhesions of REF-52 cells 10-20 min after injection. The association of this fragment with focal adhesions in vivo is consistent with its interaction in vitro with the cytoplasmic domain of the beta 1 subunit of integrin, which was also localized at these sites. When cells were injected with greater than 5 microM final concentration of either alpha-actinin fragment and cultured for 30-60 min, most stress fibers were disassembled. At this time, however, many of the focal adhesions, particularly those around the cell periphery, remained after most stress fibers had gone. By 2 h after injection only a few small focal adhesions persisted, yet the cells remained spread. Identical results were obtained with other cell types including primary chick fibroblasts, BSC-1, MDCK, and gerbil fibroma cells. Stress fibers and focal adhesions reformed if cells were allowed to recover for 18 h after injection. These data suggest that introduction of the monomeric 27-kD fragment of alpha-actinin into cells may disrupt the actin cytoskeleton by interfering with the function of endogenous, intact alpha-actinin molecules along stress fibers. The 53-kD fragment may interfere with endogenous alpha-actinin function at focal adhesions or by displacing some other component that binds to the rod domain of alpha-actinin and that is needed to maintain stress fiber organization. |
format | Text |
id | pubmed-2289090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22890902008-05-01 Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin J Cell Biol Articles Alpha-actinin can be proteolytically cleaved into major fragments of 27 and 53 kD using the enzyme thermolysin. The 27-kD fragment contains an actin-binding site and we have recently shown that the 53-kD fragment binds to the cytoplasmic domain of beta 1 integrin in vitro (Otey, C. A., F. M. Pavalko, and K. Burridge. 1990. J. Cell Biol. 111:721-729). We have explored the behavior of the isolated 27- and 53-kD fragments of alpha-actinin after their microinjection into living cells. Consistent with its containing a binding site for actin, the 27-kD fragment was detected along stress fibers within 10-20 min after injection into rat embryo fibroblasts (REF-52). The 53-kD fragment of alpha-actinin, however, concentrated in focal adhesions of REF-52 cells 10-20 min after injection. The association of this fragment with focal adhesions in vivo is consistent with its interaction in vitro with the cytoplasmic domain of the beta 1 subunit of integrin, which was also localized at these sites. When cells were injected with greater than 5 microM final concentration of either alpha-actinin fragment and cultured for 30-60 min, most stress fibers were disassembled. At this time, however, many of the focal adhesions, particularly those around the cell periphery, remained after most stress fibers had gone. By 2 h after injection only a few small focal adhesions persisted, yet the cells remained spread. Identical results were obtained with other cell types including primary chick fibroblasts, BSC-1, MDCK, and gerbil fibroma cells. Stress fibers and focal adhesions reformed if cells were allowed to recover for 18 h after injection. These data suggest that introduction of the monomeric 27-kD fragment of alpha-actinin into cells may disrupt the actin cytoskeleton by interfering with the function of endogenous, intact alpha-actinin molecules along stress fibers. The 53-kD fragment may interfere with endogenous alpha-actinin function at focal adhesions or by displacing some other component that binds to the rod domain of alpha-actinin and that is needed to maintain stress fiber organization. The Rockefeller University Press 1991-08-01 /pmc/articles/PMC2289090/ /pubmed/1907287 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
title | Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
title_full | Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
title_fullStr | Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
title_full_unstemmed | Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
title_short | Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
title_sort | disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289090/ https://www.ncbi.nlm.nih.gov/pubmed/1907287 |