Cargando…

Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae

The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289092/
https://www.ncbi.nlm.nih.gov/pubmed/1860883
_version_ 1782152177633984512
collection PubMed
description The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells.
format Text
id pubmed-2289092
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22890922008-05-01 Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae J Cell Biol Articles The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells. The Rockefeller University Press 1991-08-01 /pmc/articles/PMC2289092/ /pubmed/1860883 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae
title Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae
title_full Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae
title_fullStr Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae
title_full_unstemmed Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae
title_short Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae
title_sort studies concerning the temporal and genetic control of cell polarity in saccharomyces cerevisiae
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289092/
https://www.ncbi.nlm.nih.gov/pubmed/1860883