Cargando…

Increased calcium influx in dystrophic muscle

We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289194/
https://www.ncbi.nlm.nih.gov/pubmed/1661733
_version_ 1782152201990307840
collection PubMed
description We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)- ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle.
format Text
id pubmed-2289194
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22891942008-05-01 Increased calcium influx in dystrophic muscle J Cell Biol Articles We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)- ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle. The Rockefeller University Press 1991-12-02 /pmc/articles/PMC2289194/ /pubmed/1661733 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Increased calcium influx in dystrophic muscle
title Increased calcium influx in dystrophic muscle
title_full Increased calcium influx in dystrophic muscle
title_fullStr Increased calcium influx in dystrophic muscle
title_full_unstemmed Increased calcium influx in dystrophic muscle
title_short Increased calcium influx in dystrophic muscle
title_sort increased calcium influx in dystrophic muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289194/
https://www.ncbi.nlm.nih.gov/pubmed/1661733