Cargando…
s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin
Cyclophilins (cyclosporin A-binding proteins) are conserved, ubiquitous, and abundant proteins that accelerate the isomerization of XaaPro peptide bonds and the refolding of proteins in vitro. s- Cyclophilin is a member of the cyclophilin family with unique NH2- and COOH-terminal extensions, and wit...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1992
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289259/ https://www.ncbi.nlm.nih.gov/pubmed/1530944 |
_version_ | 1782152215761256448 |
---|---|
collection | PubMed |
description | Cyclophilins (cyclosporin A-binding proteins) are conserved, ubiquitous, and abundant proteins that accelerate the isomerization of XaaPro peptide bonds and the refolding of proteins in vitro. s- Cyclophilin is a member of the cyclophilin family with unique NH2- and COOH-terminal extensions, and with a signal sequence. We now report that s-cyclophilin is retained in the cell, and that the conserved s- cyclophilin-specific COOH-terminal extension VEKPFAIAKE is sufficient to direct a secretory protein to s-cyclophilin containing structures. Antibodies to s-cyclophilin-specific peptides were produced and the location of the protein was determined by an immunocytochemical study at the light microscopic level. s-Cyclophilin colocalized with the Ca(2+)-binding protein calreticulin and, to a lesser extent, with the microsomal Ca(2+)-ATPase in the myogenic cell line L6, and with the Ca(2+)-binding protein calsequestrin in skeletal muscle. In activated platelets, s-cyclophilin immunoreactivity was detected in a ring-like structure that might correspond to the Ca(2+)-storing and -releasing dense tubular network. In spreading cells, s-cyclophilin containing vesicular structures accumulated at actin-rich protrusion sites. While s-cyclophilin consistently codistributed with Ca2+ storage site markers, the distribution of s-cyclophilin immunoreactivity was not identical to that of ER markers. To determine whether the COOH-terminal extension of s-cyclophilin was involved in its intracellular transport we added this sequence to the COOH-terminus of the secretory protein glia-derived nexin. Appropriate constructs were expressed transiently in cultured cells and proteins were detected with specific antibodies. We found that glia-derived nexin with the COOH-terminal sequence VEKPFAIAKE (but not with the control sequence GLVVMNIT) colocalized with endogenous s-cyclophilin, indicating that the sequence contained retention information. These results indicate that s-cyclophilin is a retained component of an intracellular organelle and that it may accumulate in specialized portions of the ER, and possibly in calciosomes. Because of its conserved structure, widespread distribution, and abundance s-cyclophilin may be a useful marker to study the biogenesis and distribution of ER subcompartments. |
format | Text |
id | pubmed-2289259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1992 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22892592008-05-01 s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin J Cell Biol Articles Cyclophilins (cyclosporin A-binding proteins) are conserved, ubiquitous, and abundant proteins that accelerate the isomerization of XaaPro peptide bonds and the refolding of proteins in vitro. s- Cyclophilin is a member of the cyclophilin family with unique NH2- and COOH-terminal extensions, and with a signal sequence. We now report that s-cyclophilin is retained in the cell, and that the conserved s- cyclophilin-specific COOH-terminal extension VEKPFAIAKE is sufficient to direct a secretory protein to s-cyclophilin containing structures. Antibodies to s-cyclophilin-specific peptides were produced and the location of the protein was determined by an immunocytochemical study at the light microscopic level. s-Cyclophilin colocalized with the Ca(2+)-binding protein calreticulin and, to a lesser extent, with the microsomal Ca(2+)-ATPase in the myogenic cell line L6, and with the Ca(2+)-binding protein calsequestrin in skeletal muscle. In activated platelets, s-cyclophilin immunoreactivity was detected in a ring-like structure that might correspond to the Ca(2+)-storing and -releasing dense tubular network. In spreading cells, s-cyclophilin containing vesicular structures accumulated at actin-rich protrusion sites. While s-cyclophilin consistently codistributed with Ca2+ storage site markers, the distribution of s-cyclophilin immunoreactivity was not identical to that of ER markers. To determine whether the COOH-terminal extension of s-cyclophilin was involved in its intracellular transport we added this sequence to the COOH-terminus of the secretory protein glia-derived nexin. Appropriate constructs were expressed transiently in cultured cells and proteins were detected with specific antibodies. We found that glia-derived nexin with the COOH-terminal sequence VEKPFAIAKE (but not with the control sequence GLVVMNIT) colocalized with endogenous s-cyclophilin, indicating that the sequence contained retention information. These results indicate that s-cyclophilin is a retained component of an intracellular organelle and that it may accumulate in specialized portions of the ER, and possibly in calciosomes. Because of its conserved structure, widespread distribution, and abundance s-cyclophilin may be a useful marker to study the biogenesis and distribution of ER subcompartments. The Rockefeller University Press 1992-01-01 /pmc/articles/PMC2289259/ /pubmed/1530944 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin |
title | s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin |
title_full | s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin |
title_fullStr | s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin |
title_full_unstemmed | s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin |
title_short | s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin |
title_sort | s-cyclophilin is retained intracellularly via a unique cooh-terminal sequence and colocalizes with the calcium storage protein calreticulin |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289259/ https://www.ncbi.nlm.nih.gov/pubmed/1530944 |