Cargando…
The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase
Expression of the beta-galactoside alpha 2,6-sialyltransferase (alpha 2,6-ST) was shown to regulate the generation of multiple cell-surface differentiation antigens (Ags) that may be necessary for lymphocyte function. A new mAb was produced, termed HB-6, that was shown to identify a novel neuraminid...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1992
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289289/ https://www.ncbi.nlm.nih.gov/pubmed/1730763 |
_version_ | 1782152222802444288 |
---|---|
collection | PubMed |
description | Expression of the beta-galactoside alpha 2,6-sialyltransferase (alpha 2,6-ST) was shown to regulate the generation of multiple cell-surface differentiation antigens (Ags) that may be necessary for lymphocyte function. A new mAb was produced, termed HB-6, that was shown to identify a novel neuraminidase-sensitive cell-surface Ag expressed by subpopulations of human lymphocytes and erythrocytes. In attempting to isolate a cDNA encoding the HB-6 antigen by expression cloning, a cDNA encoding the alpha 2,6-ST (EC 2.4.99.1) was obtained. Since expression of the alpha 2,6-ST protein was shown to be limited to the Golgi apparatus, the cell-surface HB-6 Ag was demonstrated to be the product of alpha 2,6-ST activity. Interestingly, alpha 2,6-ST expression also generated two other neuraminidase-sensitive lymphocyte cell-surface differentiation Ags, CDw75, and CD76. The HB-6, CDw75, and CD76 mAb identified distinct Ags that were differentially expressed by different B cell lines and exhibited different patterns of expression in tissue sections. These results indicate that alpha 2,6-ST expression is a critical regulatory step in the formation of the Ags that are recognized by these mAb, and that an alpha 2,6-linked sialic acid residue is an essential component of each Ag. Thus, expression of a single ST can result in the generation of multiple distinct antigenic determinants on the cell surface which can be distinguished by mAb and may have regulatory roles in lymphocyte function. |
format | Text |
id | pubmed-2289289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1992 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22892892008-05-01 The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase J Cell Biol Articles Expression of the beta-galactoside alpha 2,6-sialyltransferase (alpha 2,6-ST) was shown to regulate the generation of multiple cell-surface differentiation antigens (Ags) that may be necessary for lymphocyte function. A new mAb was produced, termed HB-6, that was shown to identify a novel neuraminidase-sensitive cell-surface Ag expressed by subpopulations of human lymphocytes and erythrocytes. In attempting to isolate a cDNA encoding the HB-6 antigen by expression cloning, a cDNA encoding the alpha 2,6-ST (EC 2.4.99.1) was obtained. Since expression of the alpha 2,6-ST protein was shown to be limited to the Golgi apparatus, the cell-surface HB-6 Ag was demonstrated to be the product of alpha 2,6-ST activity. Interestingly, alpha 2,6-ST expression also generated two other neuraminidase-sensitive lymphocyte cell-surface differentiation Ags, CDw75, and CD76. The HB-6, CDw75, and CD76 mAb identified distinct Ags that were differentially expressed by different B cell lines and exhibited different patterns of expression in tissue sections. These results indicate that alpha 2,6-ST expression is a critical regulatory step in the formation of the Ags that are recognized by these mAb, and that an alpha 2,6-linked sialic acid residue is an essential component of each Ag. Thus, expression of a single ST can result in the generation of multiple distinct antigenic determinants on the cell surface which can be distinguished by mAb and may have regulatory roles in lymphocyte function. The Rockefeller University Press 1992-01-02 /pmc/articles/PMC2289289/ /pubmed/1730763 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
title | The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
title_full | The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
title_fullStr | The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
title_full_unstemmed | The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
title_short | The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
title_sort | hb-6, cdw75, and cd76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289289/ https://www.ncbi.nlm.nih.gov/pubmed/1730763 |