Cargando…
Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells
The Semliki Forest virus (SFV) directs the synthesis of a heterodimeric membrane protein complex which is used for virus membrane assembly during budding at the surface of the infected cell, as well as for low pH-induced membrane fusion in the endosomes when particles enter new host cells. Existing...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1992
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289294/ https://www.ncbi.nlm.nih.gov/pubmed/1370493 |
_version_ | 1782152224144621568 |
---|---|
collection | PubMed |
description | The Semliki Forest virus (SFV) directs the synthesis of a heterodimeric membrane protein complex which is used for virus membrane assembly during budding at the surface of the infected cell, as well as for low pH-induced membrane fusion in the endosomes when particles enter new host cells. Existing evidence suggests that the E1 protein subunit carries the fusion potential of the heterodimer, whereas the E2 subunit, or its intracellular precursor p62, is required for binding to the nucleocapsid. We show here that during virus uptake into acidic endosomes the original E2E1 heterodimer is destabilized and the E1 proteins form new oligomers, presumably homooligomers, with altered E1 structure. This altered structure of E1 is specifically recognized by a monoclonal antibody which can also inhibit penetration of SFV into host cells as well as SFV-mediated cell-cell fusion, thus suggesting that the altered E1 structure is important for the membrane fusion. These results give further support for a membrane protein oligomerization- mediated control mechanism for the membrane fusion potential in alphaviruses. |
format | Text |
id | pubmed-2289294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1992 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22892942008-05-01 Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells J Cell Biol Articles The Semliki Forest virus (SFV) directs the synthesis of a heterodimeric membrane protein complex which is used for virus membrane assembly during budding at the surface of the infected cell, as well as for low pH-induced membrane fusion in the endosomes when particles enter new host cells. Existing evidence suggests that the E1 protein subunit carries the fusion potential of the heterodimer, whereas the E2 subunit, or its intracellular precursor p62, is required for binding to the nucleocapsid. We show here that during virus uptake into acidic endosomes the original E2E1 heterodimer is destabilized and the E1 proteins form new oligomers, presumably homooligomers, with altered E1 structure. This altered structure of E1 is specifically recognized by a monoclonal antibody which can also inhibit penetration of SFV into host cells as well as SFV-mediated cell-cell fusion, thus suggesting that the altered E1 structure is important for the membrane fusion. These results give further support for a membrane protein oligomerization- mediated control mechanism for the membrane fusion potential in alphaviruses. The Rockefeller University Press 1992-01-02 /pmc/articles/PMC2289294/ /pubmed/1370493 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
title | Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
title_full | Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
title_fullStr | Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
title_full_unstemmed | Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
title_short | Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
title_sort | membrane fusion process of semliki forest virus. i: low ph-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289294/ https://www.ncbi.nlm.nih.gov/pubmed/1370493 |