Cargando…

Evidence for the regulation of exocytic transport by protein phosphorylation

We investigated the effects of the protein phosphatase inhibitors okadaic acid and microcystin-LR upon transport of newly synthesized proteins through the exocytic pathway. Treatment of CHO cells with 1 microM okadaic acid rapidly inhibited movement of a marker protein (vesicular stomatitis virus G...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289369/
https://www.ncbi.nlm.nih.gov/pubmed/1311711
_version_ 1782152242536644608
collection PubMed
description We investigated the effects of the protein phosphatase inhibitors okadaic acid and microcystin-LR upon transport of newly synthesized proteins through the exocytic pathway. Treatment of CHO cells with 1 microM okadaic acid rapidly inhibited movement of a marker protein (vesicular stomatitis virus G protein) from the endoplasmic reticulum to the Golgi compartment. Both okadaic acid and microcystin-LR also inhibited transport in an in vitro assay reconstituting movement to the Golgi compartment, at concentrations equivalent to those required to inhibit phosphorylase phosphatase activity. Inhibition both in vivo and in vitro could be antagonized by protein kinase inhibitors, suggesting that protein phosphorylation was directly responsible for this effect. An early stage in the transport reaction associated with vesicle formation or targeting was inhibited by protein phosphorylation, which could be reversed by fractions enriched in protein phosphatase 2A. Protein kinase antagonists did not inhibit transport between sequential compartments of the exocytic pathway in vitro, suggesting that protein phosphorylation is not itself required for vesicular transport. During mitosis, vesicular transport is inhibited simultaneous to the activation of maturation-promoting factor. It is proposed that the inhibition caused by okadaic acid and microcystin-LR involves a similar mechanism to that responsible for the mitotic arrest of vesicular transport.
format Text
id pubmed-2289369
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22893692008-05-01 Evidence for the regulation of exocytic transport by protein phosphorylation J Cell Biol Articles We investigated the effects of the protein phosphatase inhibitors okadaic acid and microcystin-LR upon transport of newly synthesized proteins through the exocytic pathway. Treatment of CHO cells with 1 microM okadaic acid rapidly inhibited movement of a marker protein (vesicular stomatitis virus G protein) from the endoplasmic reticulum to the Golgi compartment. Both okadaic acid and microcystin-LR also inhibited transport in an in vitro assay reconstituting movement to the Golgi compartment, at concentrations equivalent to those required to inhibit phosphorylase phosphatase activity. Inhibition both in vivo and in vitro could be antagonized by protein kinase inhibitors, suggesting that protein phosphorylation was directly responsible for this effect. An early stage in the transport reaction associated with vesicle formation or targeting was inhibited by protein phosphorylation, which could be reversed by fractions enriched in protein phosphatase 2A. Protein kinase antagonists did not inhibit transport between sequential compartments of the exocytic pathway in vitro, suggesting that protein phosphorylation is not itself required for vesicular transport. During mitosis, vesicular transport is inhibited simultaneous to the activation of maturation-promoting factor. It is proposed that the inhibition caused by okadaic acid and microcystin-LR involves a similar mechanism to that responsible for the mitotic arrest of vesicular transport. The Rockefeller University Press 1992-03-02 /pmc/articles/PMC2289369/ /pubmed/1311711 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Evidence for the regulation of exocytic transport by protein phosphorylation
title Evidence for the regulation of exocytic transport by protein phosphorylation
title_full Evidence for the regulation of exocytic transport by protein phosphorylation
title_fullStr Evidence for the regulation of exocytic transport by protein phosphorylation
title_full_unstemmed Evidence for the regulation of exocytic transport by protein phosphorylation
title_short Evidence for the regulation of exocytic transport by protein phosphorylation
title_sort evidence for the regulation of exocytic transport by protein phosphorylation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289369/
https://www.ncbi.nlm.nih.gov/pubmed/1311711