Cargando…

Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging

Intracellular movement of vesiculated pigment granules in angelfish melanophores is regulated by a signalling pathway that triggers kinesin and dyneinlike microtubule motor proteins. We have tested the relative importance of intracellular Ca2+ ([Ca2+]i) vs cAMP ([cAMP]i) in the control of such motil...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289409/
https://www.ncbi.nlm.nih.gov/pubmed/1348251
_version_ 1782152251078344704
collection PubMed
description Intracellular movement of vesiculated pigment granules in angelfish melanophores is regulated by a signalling pathway that triggers kinesin and dyneinlike microtubule motor proteins. We have tested the relative importance of intracellular Ca2+ ([Ca2+]i) vs cAMP ([cAMP]i) in the control of such motility by adrenergic agonists, using fluorescence ratio imaging and many ways to artificially stimulate or suppress signals in these pathways. Fura-2 imaging reported a [Ca2+]i elevation accompanying pigment aggregation, but this increase was not essential since movement was not induced with the calcium ionophore, ionomycin, nor was movement blocked when the increases were suppressed by withdrawal of extracellular Ca2+ or loading of intracellular BAPTA. The phosphatase inhibitor, okadaic acid, blocked aggregation and induced dispersion at concentrations that suggested that the protein phosphatase PP-1 or PP-2A was continuously turning phosphate over during intracellular motility. cAMP was monitored dynamically in single living cells by microinjecting cAMP-dependent kinase in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine respectively (Adams et al., 1991. Nature (Lond.). 349:694- 697). Ratio imaging of F1CRhR showed that the alpha 2-adrenergic receptor-mediated aggregation was accompanied by a dose-dependent decrease in [cAMP]i. The decrease in [cAMP]i was both necessary and sufficient for aggregation, since cAMP analogs or microinjected free catalytic subunit of A kinase-blocked aggregation or caused dispersal, whereas the cAMP antagonist RpcAMPs or the microinjection of the specific kinase inhibitor PKI5-24 amide induced aggregation. Our conclusion that cAMP, not calcium, controls bidirectional microtubule dependent motility in melanophores might be relevant to other instances of non-muscle cell motility.
format Text
id pubmed-2289409
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22894092008-05-01 Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging J Cell Biol Articles Intracellular movement of vesiculated pigment granules in angelfish melanophores is regulated by a signalling pathway that triggers kinesin and dyneinlike microtubule motor proteins. We have tested the relative importance of intracellular Ca2+ ([Ca2+]i) vs cAMP ([cAMP]i) in the control of such motility by adrenergic agonists, using fluorescence ratio imaging and many ways to artificially stimulate or suppress signals in these pathways. Fura-2 imaging reported a [Ca2+]i elevation accompanying pigment aggregation, but this increase was not essential since movement was not induced with the calcium ionophore, ionomycin, nor was movement blocked when the increases were suppressed by withdrawal of extracellular Ca2+ or loading of intracellular BAPTA. The phosphatase inhibitor, okadaic acid, blocked aggregation and induced dispersion at concentrations that suggested that the protein phosphatase PP-1 or PP-2A was continuously turning phosphate over during intracellular motility. cAMP was monitored dynamically in single living cells by microinjecting cAMP-dependent kinase in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine respectively (Adams et al., 1991. Nature (Lond.). 349:694- 697). Ratio imaging of F1CRhR showed that the alpha 2-adrenergic receptor-mediated aggregation was accompanied by a dose-dependent decrease in [cAMP]i. The decrease in [cAMP]i was both necessary and sufficient for aggregation, since cAMP analogs or microinjected free catalytic subunit of A kinase-blocked aggregation or caused dispersal, whereas the cAMP antagonist RpcAMPs or the microinjection of the specific kinase inhibitor PKI5-24 amide induced aggregation. Our conclusion that cAMP, not calcium, controls bidirectional microtubule dependent motility in melanophores might be relevant to other instances of non-muscle cell motility. The Rockefeller University Press 1992-04-01 /pmc/articles/PMC2289409/ /pubmed/1348251 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
title Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
title_full Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
title_fullStr Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
title_full_unstemmed Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
title_short Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
title_sort intracellular cyclic amp not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289409/
https://www.ncbi.nlm.nih.gov/pubmed/1348251