Cargando…

PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly

Platelet-derived growth factor is a potent mitogen for cells of mesenchymal origin. It is made up of two polypeptide chains (A and B) combined in three disulfide-linked dimeric forms (AA, AB, and BB). Here, the biosynthesis and proteolytic processing of the two homodimeric forms of PDGF (AA and BB)...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289541/
https://www.ncbi.nlm.nih.gov/pubmed/1639841
_version_ 1782152281599246336
collection PubMed
description Platelet-derived growth factor is a potent mitogen for cells of mesenchymal origin. It is made up of two polypeptide chains (A and B) combined in three disulfide-linked dimeric forms (AA, AB, and BB). Here, the biosynthesis and proteolytic processing of the two homodimeric forms of PDGF (AA and BB) were studied in CHO cells stably transfected with A-chain (short splice version) or B-chain cDNA. PDGF- AA was processed to a 30-kD molecule which was secreted from the cells. In contrast, PDGF-BB formed two structurally distinct end products; a minor secreted 30-kD form and a major cell-associated 24-kD form. Immunocytochemical studies at light- and electron-microscopical levels revealed presence of PDGF in the Golgi complex, in lysosomes, and to a smaller extent in the ER. From analysis of cells treated with brefeldin A, an inhibitor of ER to Golgi transport, it was concluded that dimerization occurs in the ER, whereas the proteolytic processing of PDGF-AA and PDGF-BB precursors normally occurs in a compartment distal to the ER. Exposure of the cultures to the lysosomal inhibitor chloroquine led to an increased cellular accumulation of PDGF-BB, as determined both by metabolic labeling experiments and immunocytochemical methods, indicating that the retained form of PDGF- BB is normally degraded in lysosomes. Structural analysis of the two end products of PDGF-BB revealed that the secreted 30-kD form is a dimer of peptides processed as the B-chain of PDGF purified from human platelets, and that the retained 24-kD form is made up of subunits additionally processed in the NH2-terminus. Also, the 24-kD form was shown to be composed of proteolytic fragments held together by disulfide bridges. Taken together these findings suggest that the newly synthesized PDGF A- and B-chains are dimerized in the ER and thereafter transferred to the Golgi complex for proteolytic processing. From there, PDGF-AA is carried in vesicles to the cell surface for release extracellularly by exocytosis. A smaller part of PDGF-BB (the 30-kD form) is handled in a similar way, whereas the major part (the 24-kD form) is generated by additional proteolysis in the Golgi complex, from which it is slowly carried over to lysosomes for degradation.
format Text
id pubmed-2289541
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22895412008-05-01 PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly J Cell Biol Articles Platelet-derived growth factor is a potent mitogen for cells of mesenchymal origin. It is made up of two polypeptide chains (A and B) combined in three disulfide-linked dimeric forms (AA, AB, and BB). Here, the biosynthesis and proteolytic processing of the two homodimeric forms of PDGF (AA and BB) were studied in CHO cells stably transfected with A-chain (short splice version) or B-chain cDNA. PDGF- AA was processed to a 30-kD molecule which was secreted from the cells. In contrast, PDGF-BB formed two structurally distinct end products; a minor secreted 30-kD form and a major cell-associated 24-kD form. Immunocytochemical studies at light- and electron-microscopical levels revealed presence of PDGF in the Golgi complex, in lysosomes, and to a smaller extent in the ER. From analysis of cells treated with brefeldin A, an inhibitor of ER to Golgi transport, it was concluded that dimerization occurs in the ER, whereas the proteolytic processing of PDGF-AA and PDGF-BB precursors normally occurs in a compartment distal to the ER. Exposure of the cultures to the lysosomal inhibitor chloroquine led to an increased cellular accumulation of PDGF-BB, as determined both by metabolic labeling experiments and immunocytochemical methods, indicating that the retained form of PDGF- BB is normally degraded in lysosomes. Structural analysis of the two end products of PDGF-BB revealed that the secreted 30-kD form is a dimer of peptides processed as the B-chain of PDGF purified from human platelets, and that the retained 24-kD form is made up of subunits additionally processed in the NH2-terminus. Also, the 24-kD form was shown to be composed of proteolytic fragments held together by disulfide bridges. Taken together these findings suggest that the newly synthesized PDGF A- and B-chains are dimerized in the ER and thereafter transferred to the Golgi complex for proteolytic processing. From there, PDGF-AA is carried in vesicles to the cell surface for release extracellularly by exocytosis. A smaller part of PDGF-BB (the 30-kD form) is handled in a similar way, whereas the major part (the 24-kD form) is generated by additional proteolysis in the Golgi complex, from which it is slowly carried over to lysosomes for degradation. The Rockefeller University Press 1992-08-01 /pmc/articles/PMC2289541/ /pubmed/1639841 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly
title PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly
title_full PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly
title_fullStr PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly
title_full_unstemmed PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly
title_short PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly
title_sort pdgf-aa and pdgf-bb biosynthesis: proprotein processing in the golgi complex and lysosomal degradation of pdgf-bb retained intracellularly
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289541/
https://www.ncbi.nlm.nih.gov/pubmed/1639841