Cargando…

A cytomechanical investigation of neurite growth on different culture surfaces

We have examined the relationship between tension, an intrinsic stimulator of axonal elongation, and the culture substrate, an extrinsic regulator of axonal elongation. Chick sensory neurons were cultured on three substrata: (a) plain tissue culture plastic; (b) plastic treated with collagen type IV...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289549/
https://www.ncbi.nlm.nih.gov/pubmed/1639849
_version_ 1782152283557986304
collection PubMed
description We have examined the relationship between tension, an intrinsic stimulator of axonal elongation, and the culture substrate, an extrinsic regulator of axonal elongation. Chick sensory neurons were cultured on three substrata: (a) plain tissue culture plastic; (b) plastic treated with collagen type IV; and (c) plastic treated with laminin. Calibrated glass needles were used to increase the tension loads on growing neurites. We found that growth cones on all substrata failed to detach when subjected to two to threefold and in some cases 5- 10-fold greater tensions than their self-imposed rest tension. We conclude that adhesion to the substrate does not limit the tension exerted by growth cones. These data argue against a "tug-of-war" model for substrate-mediated guidance of growth cones. Neurite elongation was experimentally induced by towing neurites with a force-calibrated glass needle. On all substrata, towed elongation rate was proportional to applied tension above a threshold tension. The proportionality between elongation rate and tension can be regarded as the growth sensitivity of the neurite to tension, i.e., its growth rate per unit tension. On this basis, towed growth on all substrata can be described by the simple linear equation: elongation rate = sensitivity x (applied tension - tension threshold) The numerical values of tension thresholds and neurite sensitivities varied widely among different neurites. On all substrata, thresholds varied from near zero to greater than 200 mudynes, with some tendency for thresholds to cluster between 100 and 150 mudynes. Similarly, the tension sensitivity of neurites varied between 0.5 and 5.0 microns/h/mudyne. The lack of significant differences among sensitivity or threshold values on the various substrata suggest to use that the substratum does not affect the internal "set points" of the neurite for its response to tension. The growth cone of chick sensory neurons is known to pull on its neurite. The simplest cytomechanical model would assume that both growth cone- mediated elongation and towed growth are identical as far as tension input and elongation rate are concerned. We used the equation above and mean values for thresholds and sensitivity from towing experiments to predict the mean growth cone-mediated elongation rate based on mean rest tensions. These predictions are consistent with the observed mean values.
format Text
id pubmed-2289549
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22895492008-05-01 A cytomechanical investigation of neurite growth on different culture surfaces J Cell Biol Articles We have examined the relationship between tension, an intrinsic stimulator of axonal elongation, and the culture substrate, an extrinsic regulator of axonal elongation. Chick sensory neurons were cultured on three substrata: (a) plain tissue culture plastic; (b) plastic treated with collagen type IV; and (c) plastic treated with laminin. Calibrated glass needles were used to increase the tension loads on growing neurites. We found that growth cones on all substrata failed to detach when subjected to two to threefold and in some cases 5- 10-fold greater tensions than their self-imposed rest tension. We conclude that adhesion to the substrate does not limit the tension exerted by growth cones. These data argue against a "tug-of-war" model for substrate-mediated guidance of growth cones. Neurite elongation was experimentally induced by towing neurites with a force-calibrated glass needle. On all substrata, towed elongation rate was proportional to applied tension above a threshold tension. The proportionality between elongation rate and tension can be regarded as the growth sensitivity of the neurite to tension, i.e., its growth rate per unit tension. On this basis, towed growth on all substrata can be described by the simple linear equation: elongation rate = sensitivity x (applied tension - tension threshold) The numerical values of tension thresholds and neurite sensitivities varied widely among different neurites. On all substrata, thresholds varied from near zero to greater than 200 mudynes, with some tendency for thresholds to cluster between 100 and 150 mudynes. Similarly, the tension sensitivity of neurites varied between 0.5 and 5.0 microns/h/mudyne. The lack of significant differences among sensitivity or threshold values on the various substrata suggest to use that the substratum does not affect the internal "set points" of the neurite for its response to tension. The growth cone of chick sensory neurons is known to pull on its neurite. The simplest cytomechanical model would assume that both growth cone- mediated elongation and towed growth are identical as far as tension input and elongation rate are concerned. We used the equation above and mean values for thresholds and sensitivity from towing experiments to predict the mean growth cone-mediated elongation rate based on mean rest tensions. These predictions are consistent with the observed mean values. The Rockefeller University Press 1992-08-01 /pmc/articles/PMC2289549/ /pubmed/1639849 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A cytomechanical investigation of neurite growth on different culture surfaces
title A cytomechanical investigation of neurite growth on different culture surfaces
title_full A cytomechanical investigation of neurite growth on different culture surfaces
title_fullStr A cytomechanical investigation of neurite growth on different culture surfaces
title_full_unstemmed A cytomechanical investigation of neurite growth on different culture surfaces
title_short A cytomechanical investigation of neurite growth on different culture surfaces
title_sort cytomechanical investigation of neurite growth on different culture surfaces
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289549/
https://www.ncbi.nlm.nih.gov/pubmed/1639849