Cargando…

The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond

We used in vitro translocation and cosedimentation assays to study the microtubule binding properties of sea urchin sperm outer arm dynein and its beta/IC1 subunit. Microtubules glided on glass-absorbed sea urchin dynein for a period of time directly proportional to the initial MgATP2- concentration...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289586/
https://www.ncbi.nlm.nih.gov/pubmed/1387405
_version_ 1782152293073813504
collection PubMed
description We used in vitro translocation and cosedimentation assays to study the microtubule binding properties of sea urchin sperm outer arm dynein and its beta/IC1 subunit. Microtubules glided on glass-absorbed sea urchin dynein for a period of time directly proportional to the initial MgATP2- concentration and then detached when 70-95% of the MgATP2- was hydrolyzed. Detachment resulted from MgATP2- depletion, because (a) perfusion with fresh buffer containing MgATP2- reconstituted binding and gliding, (b) microtubules glided many minutes with an ATP- regenerating system at ATP concentrations which alone supported gliding for only 1-2 min, and (c) microtubules detached upon total hydrolysis of ATP by an ATP-removal system. The products of ATP hydrolysis antagonized binding and gliding; as little as a threefold excess of ADP/Pi over ATP resulted in complete loss of microtubule binding and translocation by the beta/IC1 subunit. In contrast to the situation with sea urchin dynein, microtubules ceased gliding but remained bound to glass-absorbed Tetrahymena outer arm dynein when MgATP2- was exhausted. Cosedimentation assays showed that Tetrahymena outer arm dynein sedimented with microtubules in an ATP-sensitive manner, as previously reported (Porter, M.E., and K. A. Johnson. J. Biol. Chem. 258: 6575-6581). However, the beta/IC1 subunit of sea urchin dynein did not cosediment with microtubules in the absence of ATP. Thus, this subunit, while capable of generating motility, lacks both structural and rigor-type microtubule binding.
format Text
id pubmed-2289586
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22895862008-05-01 The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond J Cell Biol Articles We used in vitro translocation and cosedimentation assays to study the microtubule binding properties of sea urchin sperm outer arm dynein and its beta/IC1 subunit. Microtubules glided on glass-absorbed sea urchin dynein for a period of time directly proportional to the initial MgATP2- concentration and then detached when 70-95% of the MgATP2- was hydrolyzed. Detachment resulted from MgATP2- depletion, because (a) perfusion with fresh buffer containing MgATP2- reconstituted binding and gliding, (b) microtubules glided many minutes with an ATP- regenerating system at ATP concentrations which alone supported gliding for only 1-2 min, and (c) microtubules detached upon total hydrolysis of ATP by an ATP-removal system. The products of ATP hydrolysis antagonized binding and gliding; as little as a threefold excess of ADP/Pi over ATP resulted in complete loss of microtubule binding and translocation by the beta/IC1 subunit. In contrast to the situation with sea urchin dynein, microtubules ceased gliding but remained bound to glass-absorbed Tetrahymena outer arm dynein when MgATP2- was exhausted. Cosedimentation assays showed that Tetrahymena outer arm dynein sedimented with microtubules in an ATP-sensitive manner, as previously reported (Porter, M.E., and K. A. Johnson. J. Biol. Chem. 258: 6575-6581). However, the beta/IC1 subunit of sea urchin dynein did not cosediment with microtubules in the absence of ATP. Thus, this subunit, while capable of generating motility, lacks both structural and rigor-type microtubule binding. The Rockefeller University Press 1992-09-01 /pmc/articles/PMC2289586/ /pubmed/1387405 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
title The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
title_full The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
title_fullStr The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
title_full_unstemmed The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
title_short The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
title_sort motile beta/ic1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289586/
https://www.ncbi.nlm.nih.gov/pubmed/1387405