Cargando…

Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins

Migration of endothelial cells is one of the first cellular responses in the cascade of events that leads to re-endothelialization of an injured vessel and neovascularization of growing tissues and tumors. To examine the hypothesis that endothelial cells express a specific migration-associated pheno...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289645/
https://www.ncbi.nlm.nih.gov/pubmed/1400586
_version_ 1782152307037700096
collection PubMed
description Migration of endothelial cells is one of the first cellular responses in the cascade of events that leads to re-endothelialization of an injured vessel and neovascularization of growing tissues and tumors. To examine the hypothesis that endothelial cells express a specific migration-associated phenotype, we analyzed the cell surface glycoprotein expression of migrating bovine aortic endothelial cell (BAECs). Light microscopic analysis revealed an upregulation of binding sites for the lectins Concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin after neuraminidase treatment (N-PNA) on migrating endothelial cells relative to contact-inhibited cells. These findings were confirmed and quantitated with an enzyme-linked lectin assay (ELLA) of circularly scraped BAEC monolayers. The expression of migration-associated cell surface glycoproteins was also analyzed by SDS-PAGE. The overall expression of cell surface glycoproteins was upregulated on migrating BAECs. Migrating BAECs expressed Con A- and WGA-binding glycoproteins with apparent molecular masses of 25 and 48 kD that were not expressed by contact-inhibited BAEC monolayers and, accordingly, disappeared as circularly scraped monolayers reached confluence. Subconfluent BAEC monolayers expressed the same cell surface glycoconjugate pattern as migrating endothelial cells. FACS analysis of circularly scraped BAEC monolayers showed that the phenotypic changes of cell surface glycoprotein expression after release from growth arrest occurred before the recruitment of the cells into the cell cycle (3 vs. 12 h). Suramin, which inhibits endothelial cell migration, abrogated the expression of the migration-associated phenotype and induced the expression of a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein. These results indicate that endothelial cells express a specific migration-associated phenotype, which is characterized by the upregulation of distinct cellular glycoconjugates and the expression of specific migration-associated cell surface glycoproteins.
format Text
id pubmed-2289645
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22896452008-05-01 Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins J Cell Biol Articles Migration of endothelial cells is one of the first cellular responses in the cascade of events that leads to re-endothelialization of an injured vessel and neovascularization of growing tissues and tumors. To examine the hypothesis that endothelial cells express a specific migration-associated phenotype, we analyzed the cell surface glycoprotein expression of migrating bovine aortic endothelial cell (BAECs). Light microscopic analysis revealed an upregulation of binding sites for the lectins Concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin after neuraminidase treatment (N-PNA) on migrating endothelial cells relative to contact-inhibited cells. These findings were confirmed and quantitated with an enzyme-linked lectin assay (ELLA) of circularly scraped BAEC monolayers. The expression of migration-associated cell surface glycoproteins was also analyzed by SDS-PAGE. The overall expression of cell surface glycoproteins was upregulated on migrating BAECs. Migrating BAECs expressed Con A- and WGA-binding glycoproteins with apparent molecular masses of 25 and 48 kD that were not expressed by contact-inhibited BAEC monolayers and, accordingly, disappeared as circularly scraped monolayers reached confluence. Subconfluent BAEC monolayers expressed the same cell surface glycoconjugate pattern as migrating endothelial cells. FACS analysis of circularly scraped BAEC monolayers showed that the phenotypic changes of cell surface glycoprotein expression after release from growth arrest occurred before the recruitment of the cells into the cell cycle (3 vs. 12 h). Suramin, which inhibits endothelial cell migration, abrogated the expression of the migration-associated phenotype and induced the expression of a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein. These results indicate that endothelial cells express a specific migration-associated phenotype, which is characterized by the upregulation of distinct cellular glycoconjugates and the expression of specific migration-associated cell surface glycoproteins. The Rockefeller University Press 1992-10-02 /pmc/articles/PMC2289645/ /pubmed/1400586 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
title Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
title_full Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
title_fullStr Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
title_full_unstemmed Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
title_short Migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
title_sort migrating endothelial cells are distinctly hyperglycosylated and express specific migration-associated cell surface glycoproteins
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289645/
https://www.ncbi.nlm.nih.gov/pubmed/1400586