Cargando…

Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin

The extracellular matrix molecule cytotactin is a multidomain protein that plays a role in cell migration, proliferation, and differentiation during development. To analyze the structure-function relationships of the different domains of this glycoprotein, we have prepared a series of fusion constru...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289676/
https://www.ncbi.nlm.nih.gov/pubmed/1383239
_version_ 1782152314623098880
collection PubMed
description The extracellular matrix molecule cytotactin is a multidomain protein that plays a role in cell migration, proliferation, and differentiation during development. To analyze the structure-function relationships of the different domains of this glycoprotein, we have prepared a series of fusion constructs in bacterial expression vectors. Results obtained using a number of adhesion assays suggest that at least four independent cell binding regions are distributed among the various cytotactin domains. Two of these are adhesive; two others appear to be counteradhesive in that they inhibit cell attachment to otherwise favorable substrates. The adhesive regions were mapped to the fibronectin type III repeats II-VI and the fibrinogen domain. The morphology of the cells plated onto these adhesive fragments differed; the cells spread on the fibronectin type III repeats as they do on fibronectin, but remained round on the fibrinogen domain. The counteradhesive properties of the molecule were mapped to the EGF-like repeats and the last two fibronectin type III repeats, VII-VIII. The latter region also contained a cell attachment activity that was observed only after proteolysis of the cells. Several cell types were used in these analyses, including fibroblasts, neurons, and glia, all of which are known to bind to cytotactin. The different domains exert their effects in a concentration-dependent manner and can be inhibited by an excess of the soluble molecule, consistent with the hypothesis that the observed properties are mediated by specific receptors. Moreover, it appears that some of these receptors are restricted to particular cell types. For example, glial cells bound better than neurons to the fibrinogen domain and fibroblasts bound better than glia and neurons to the EGF fragment. These results provide a basis for understanding the multiple activities of cytotactin and a framework for isolating different receptors that mediate the various cellular responses to this molecule.
format Text
id pubmed-2289676
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22896762008-05-01 Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin J Cell Biol Articles The extracellular matrix molecule cytotactin is a multidomain protein that plays a role in cell migration, proliferation, and differentiation during development. To analyze the structure-function relationships of the different domains of this glycoprotein, we have prepared a series of fusion constructs in bacterial expression vectors. Results obtained using a number of adhesion assays suggest that at least four independent cell binding regions are distributed among the various cytotactin domains. Two of these are adhesive; two others appear to be counteradhesive in that they inhibit cell attachment to otherwise favorable substrates. The adhesive regions were mapped to the fibronectin type III repeats II-VI and the fibrinogen domain. The morphology of the cells plated onto these adhesive fragments differed; the cells spread on the fibronectin type III repeats as they do on fibronectin, but remained round on the fibrinogen domain. The counteradhesive properties of the molecule were mapped to the EGF-like repeats and the last two fibronectin type III repeats, VII-VIII. The latter region also contained a cell attachment activity that was observed only after proteolysis of the cells. Several cell types were used in these analyses, including fibroblasts, neurons, and glia, all of which are known to bind to cytotactin. The different domains exert their effects in a concentration-dependent manner and can be inhibited by an excess of the soluble molecule, consistent with the hypothesis that the observed properties are mediated by specific receptors. Moreover, it appears that some of these receptors are restricted to particular cell types. For example, glial cells bound better than neurons to the fibrinogen domain and fibroblasts bound better than glia and neurons to the EGF fragment. These results provide a basis for understanding the multiple activities of cytotactin and a framework for isolating different receptors that mediate the various cellular responses to this molecule. The Rockefeller University Press 1992-11-01 /pmc/articles/PMC2289676/ /pubmed/1383239 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
title Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
title_full Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
title_fullStr Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
title_full_unstemmed Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
title_short Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
title_sort characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289676/
https://www.ncbi.nlm.nih.gov/pubmed/1383239