Cargando…

Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

BACKGROUND: Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). METHODOLOGY/PRINCIPAL FINDINGS: A laboratory-scale sequencing...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilmes, Paul, Wexler, Margaret, Bond, Philip L.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289847/
https://www.ncbi.nlm.nih.gov/pubmed/18392150
http://dx.doi.org/10.1371/journal.pone.0001778
Descripción
Sumario:BACKGROUND: Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). METHODOLOGY/PRINCIPAL FINDINGS: A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. CONCLUSIONS/SIGNIFICANCE: Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models.