Cargando…

Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport

Disruption of the yeast tropomyosin gene TPM1 results in the apparent loss of actin cables from the cytoskeleton (Liu, H., and A. Bretscher. 1989. Cell. 57:233-242). Here we show that TPM1 disrupted cells grow slowly, show heterogeneity in cell size, have delocalized deposition of chitin, and mate p...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290051/
https://www.ncbi.nlm.nih.gov/pubmed/1629236
_version_ 1782152373447163904
collection PubMed
description Disruption of the yeast tropomyosin gene TPM1 results in the apparent loss of actin cables from the cytoskeleton (Liu, H., and A. Bretscher. 1989. Cell. 57:233-242). Here we show that TPM1 disrupted cells grow slowly, show heterogeneity in cell size, have delocalized deposition of chitin, and mate poorly because of defects in both shmooing and cell fusion. The transit time of alpha-factor induced a-agglutinin secretion to the cell surface is longer than in isogenic wild-type strains, and some of the protein is mislocalized. Many of the TPM1-deleted cells contain abundant vesicles, similar in morphology to late secretory vesicles, but without an abnormal accumulation of intermediates in the delivery of either carboxypeptidase Y to the vacuole or invertase to the cell surface. Combinations of the TPM1 disruption with sec13 or sec18 mutations, which affect early steps in the secretory pathway, block vesicle accumulation, while combinations with sec1, sec4 or sec6 mutations, which affect a late step in the secretory pathway, have no effect on the vesicle accumulation. The phenotype of the TPM1 disrupted cells is very similar to that of a conditional mutation in the MYO2 gene, which encodes a myosin-like protein (Johnston, G. C., J. A. Prendergast, and R. A. Singer. 1991. J. Cell Biol. 113:539-551). The myo2-66 conditional mutation shows synthetic lethality with the TPM1 disruption, indicating that the MYO2 and TPM1 gene products may be involved in the same, or parallel function. We conclude that tropomyosin, and by inference actin cables, may facilitate directed vesicular transport of components to the correct location on the cell surface.
format Text
id pubmed-2290051
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22900512008-05-01 Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport J Cell Biol Articles Disruption of the yeast tropomyosin gene TPM1 results in the apparent loss of actin cables from the cytoskeleton (Liu, H., and A. Bretscher. 1989. Cell. 57:233-242). Here we show that TPM1 disrupted cells grow slowly, show heterogeneity in cell size, have delocalized deposition of chitin, and mate poorly because of defects in both shmooing and cell fusion. The transit time of alpha-factor induced a-agglutinin secretion to the cell surface is longer than in isogenic wild-type strains, and some of the protein is mislocalized. Many of the TPM1-deleted cells contain abundant vesicles, similar in morphology to late secretory vesicles, but without an abnormal accumulation of intermediates in the delivery of either carboxypeptidase Y to the vacuole or invertase to the cell surface. Combinations of the TPM1 disruption with sec13 or sec18 mutations, which affect early steps in the secretory pathway, block vesicle accumulation, while combinations with sec1, sec4 or sec6 mutations, which affect a late step in the secretory pathway, have no effect on the vesicle accumulation. The phenotype of the TPM1 disrupted cells is very similar to that of a conditional mutation in the MYO2 gene, which encodes a myosin-like protein (Johnston, G. C., J. A. Prendergast, and R. A. Singer. 1991. J. Cell Biol. 113:539-551). The myo2-66 conditional mutation shows synthetic lethality with the TPM1 disruption, indicating that the MYO2 and TPM1 gene products may be involved in the same, or parallel function. We conclude that tropomyosin, and by inference actin cables, may facilitate directed vesicular transport of components to the correct location on the cell surface. The Rockefeller University Press 1992-07-02 /pmc/articles/PMC2290051/ /pubmed/1629236 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
title Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
title_full Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
title_fullStr Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
title_full_unstemmed Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
title_short Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
title_sort characterization of tpm1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290051/
https://www.ncbi.nlm.nih.gov/pubmed/1629236