Cargando…

The dynamic structure of the pericellular matrix on living cells

Although up to several microns thick, the pericellular matrix is an elusive structure due to its invisibility with phase contrast or DIC microscopy. This matrix, which is readily visualized by the exclusion of large particles such as fixed red blood cells is important in embryonic development and in...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290877/
https://www.ncbi.nlm.nih.gov/pubmed/8276905
_version_ 1782152387001057280
collection PubMed
description Although up to several microns thick, the pericellular matrix is an elusive structure due to its invisibility with phase contrast or DIC microscopy. This matrix, which is readily visualized by the exclusion of large particles such as fixed red blood cells is important in embryonic development and in maintenance of cartilage. While it is known that the pericellular matrix which surrounds chondrocytes and a variety of other cells consists primarily of proteoglycans and hyaluronan with the latter binding to cell surface receptors, the macromolecular organization is still speculative. The macromolecular organization previously could not be determined because of the collapse of the cell coat with conventional fixation and dehydration techniques. Until now, there has been no way to study the dynamic arrangement of hyaluronan with its aggregated proteoglycans on living cells. In this study, the arrangement and mobility of hyaluronan-aggrecan complexes were directly observed in the pericellular matrix of living cells isolated from bovine articular cartilage. The complexes were labeled with 30- to 40-nm colloidal gold conjugated to 5-D-4, an antibody to keratan sulfate, and visualized with video-enhanced light microscopy. From our observations of the motion of pericellular matrix macromolecules, we report that the chondrocyte pericellular matrix is a dynamic structure consisting of individual tethered molecular complexes which project outward from the cell surface. These complexes undergo restricted rotation or wobbling. When the cells were cultured with ascorbic acid, which promotes production of matrix components, the size of the cell coat and the position of the gold probes relative to the plasma membrane were not changed. However, the rapidity and extent of the tethered motion were reduced. Treatment with Streptomyces hyaluronidase removed the molecules that displayed the tethered motion. Addition of hyaluronan and aggrecan to hyaluronidase-treated cells yielded the same labeling pattern and tethered motion observed with native cell coats. To determine if aggrecan was responsible for the extended configuration of the complexes, only hyaluronan was added to the hyaluronidase-treated cells. The position and mobility of the hyaluronan was detected using biotinylated hyaluronan binding region (b- HABR) and gold streptavidin. The gold-labeled b-HABR was found only near the cell surface. Based on these observations, the hyaluronan- aggrecan complexes composing the cell coat are proposed to be extended in a brush-like configuration in an analogous manner to that previously described for high density, grafted polymers in good solvents.
format Text
id pubmed-2290877
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22908772008-05-01 The dynamic structure of the pericellular matrix on living cells J Cell Biol Articles Although up to several microns thick, the pericellular matrix is an elusive structure due to its invisibility with phase contrast or DIC microscopy. This matrix, which is readily visualized by the exclusion of large particles such as fixed red blood cells is important in embryonic development and in maintenance of cartilage. While it is known that the pericellular matrix which surrounds chondrocytes and a variety of other cells consists primarily of proteoglycans and hyaluronan with the latter binding to cell surface receptors, the macromolecular organization is still speculative. The macromolecular organization previously could not be determined because of the collapse of the cell coat with conventional fixation and dehydration techniques. Until now, there has been no way to study the dynamic arrangement of hyaluronan with its aggregated proteoglycans on living cells. In this study, the arrangement and mobility of hyaluronan-aggrecan complexes were directly observed in the pericellular matrix of living cells isolated from bovine articular cartilage. The complexes were labeled with 30- to 40-nm colloidal gold conjugated to 5-D-4, an antibody to keratan sulfate, and visualized with video-enhanced light microscopy. From our observations of the motion of pericellular matrix macromolecules, we report that the chondrocyte pericellular matrix is a dynamic structure consisting of individual tethered molecular complexes which project outward from the cell surface. These complexes undergo restricted rotation or wobbling. When the cells were cultured with ascorbic acid, which promotes production of matrix components, the size of the cell coat and the position of the gold probes relative to the plasma membrane were not changed. However, the rapidity and extent of the tethered motion were reduced. Treatment with Streptomyces hyaluronidase removed the molecules that displayed the tethered motion. Addition of hyaluronan and aggrecan to hyaluronidase-treated cells yielded the same labeling pattern and tethered motion observed with native cell coats. To determine if aggrecan was responsible for the extended configuration of the complexes, only hyaluronan was added to the hyaluronidase-treated cells. The position and mobility of the hyaluronan was detected using biotinylated hyaluronan binding region (b- HABR) and gold streptavidin. The gold-labeled b-HABR was found only near the cell surface. Based on these observations, the hyaluronan- aggrecan complexes composing the cell coat are proposed to be extended in a brush-like configuration in an analogous manner to that previously described for high density, grafted polymers in good solvents. The Rockefeller University Press 1993-12-02 /pmc/articles/PMC2290877/ /pubmed/8276905 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The dynamic structure of the pericellular matrix on living cells
title The dynamic structure of the pericellular matrix on living cells
title_full The dynamic structure of the pericellular matrix on living cells
title_fullStr The dynamic structure of the pericellular matrix on living cells
title_full_unstemmed The dynamic structure of the pericellular matrix on living cells
title_short The dynamic structure of the pericellular matrix on living cells
title_sort dynamic structure of the pericellular matrix on living cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290877/
https://www.ncbi.nlm.nih.gov/pubmed/8276905