Cargando…

Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane

Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were foun...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290883/
https://www.ncbi.nlm.nih.gov/pubmed/8253840
_version_ 1782152388429217792
collection PubMed
description Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were found: (1) transport by endocytosis to the vacuole and (2) transport by a non-endocytic pathway to the nuclear envelope and mitochondria. The endocytic pathway was inhibited at low temperature (< 2 degrees C) and by ATP depletion. Mutations in secretory (SEC) genes that are necessary for membrane traffic through the secretory pathway (including SEC1, SEC2, SEC4, SEC6, SEC7, SEC12, SEC14, SEC17, SEC18, and SEC21) almost completely blocked endocytic uptake. In contrast, mutations in the SEC63, SEC65, or SEC11 genes, required for translocation of nascent secretory polypeptides into the ER or signal peptide processing in the ER, only slightly reduced endocytic uptake. Phospholipid endocytosis was also independent of the gene encoding the clathrin heavy chain, CHC1. The correlation of biochemical analysis with fluorescence microscopy indicated that the fluorescent phosphatidylcholine was degraded in the vacuole and that degradation was, at least in part, dependent on the vacuolar proteolytic cascade. The non-endocytic route functioned with a lower cellular energy charge (ATP levels 80% reduced) and was largely independent of the SEC genes. Non-endocytic transport of NBD-phosphatidylcholine to the nuclear envelope and mitochondria was inhibited by pretreatment of cells with the sulfhydryl reagents N-ethylmaleimide and p- chloromercuribenzenesulfonic acid, suggesting the existence of protein- mediated transmembrane transfer (flip-flop) of phosphatidylcholine across the yeast plasma membrane. These data establish a link between lipid movement during secretion and endocytosis in yeast and suggest that phospholipids may also gain access to intracellular organelles through non-endocytic, protein-mediated events.
format Text
id pubmed-2290883
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22908832008-05-01 Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane J Cell Biol Articles Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were found: (1) transport by endocytosis to the vacuole and (2) transport by a non-endocytic pathway to the nuclear envelope and mitochondria. The endocytic pathway was inhibited at low temperature (< 2 degrees C) and by ATP depletion. Mutations in secretory (SEC) genes that are necessary for membrane traffic through the secretory pathway (including SEC1, SEC2, SEC4, SEC6, SEC7, SEC12, SEC14, SEC17, SEC18, and SEC21) almost completely blocked endocytic uptake. In contrast, mutations in the SEC63, SEC65, or SEC11 genes, required for translocation of nascent secretory polypeptides into the ER or signal peptide processing in the ER, only slightly reduced endocytic uptake. Phospholipid endocytosis was also independent of the gene encoding the clathrin heavy chain, CHC1. The correlation of biochemical analysis with fluorescence microscopy indicated that the fluorescent phosphatidylcholine was degraded in the vacuole and that degradation was, at least in part, dependent on the vacuolar proteolytic cascade. The non-endocytic route functioned with a lower cellular energy charge (ATP levels 80% reduced) and was largely independent of the SEC genes. Non-endocytic transport of NBD-phosphatidylcholine to the nuclear envelope and mitochondria was inhibited by pretreatment of cells with the sulfhydryl reagents N-ethylmaleimide and p- chloromercuribenzenesulfonic acid, suggesting the existence of protein- mediated transmembrane transfer (flip-flop) of phosphatidylcholine across the yeast plasma membrane. These data establish a link between lipid movement during secretion and endocytosis in yeast and suggest that phospholipids may also gain access to intracellular organelles through non-endocytic, protein-mediated events. The Rockefeller University Press 1993-12-02 /pmc/articles/PMC2290883/ /pubmed/8253840 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
title Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
title_full Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
title_fullStr Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
title_full_unstemmed Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
title_short Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
title_sort retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290883/
https://www.ncbi.nlm.nih.gov/pubmed/8253840