Cargando…

Contamination of Potable Water Distribution Systems by Multiantimicrobial-Resistant Enterohemorrhagic Escherichia coli

BACKGROUND: The contamination of processed or unprocessed drinking water by fecal coliform bacteria has been reported worldwide. Despite a high incidence of waterborne diseases, entero-hemorrhagic Escherichia coli (EHEC) is an underacknowledged pathogen of concern to public health in India. Although...

Descripción completa

Detalles Bibliográficos
Autores principales: Ram, Siya, Vajpayee, Poornima, Shanker, Rishi
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290977/
https://www.ncbi.nlm.nih.gov/pubmed/18414625
http://dx.doi.org/10.1289/ehp.10809
Descripción
Sumario:BACKGROUND: The contamination of processed or unprocessed drinking water by fecal coliform bacteria has been reported worldwide. Despite a high incidence of waterborne diseases, entero-hemorrhagic Escherichia coli (EHEC) is an underacknowledged pathogen of concern to public health in India. Although the presence of EHEC is recorded in surface water resources of India, drinking water sources are yet to be investigated. OBJECTIVES: The goal of this study was to analyze potable water samples for the presence of virulence determinants of EHEC and to determine the sensitivity of the virulence determinants to antimicrobials. METHODS: We enumerated coliform bacteria in potable water samples collected from six locations in Lucknow, a major city in northern India, using the most probable number method. E. coli (n = 81), randomly isolated by membrane-filtration technique from four sites, were identified by biochemical characterization. E. coli were not detected in samples from two other sites. We screened 15 randomly selected isolates from each site for virulence determinants of EHEC using polymerase chain reaction (PCR). The isolates positive for virulence determinants (n = 18) were screened for sensitivity to 15 antimicrobials by the disk diffusion method. RESULTS: Both stx1 and stx2 genes were present in 33.3% of isolates, whereas others possessed either stx1 (11.1%) or stx2 (55.6%). eaeA, hlyA, and chuA genes were present in 100, 23.3, and 16.7% of isolates, respectively. Resistance to multiple antimicrobials was observed in potential EHEC. CONCLUSIONS: The occurrence of multiantimicrobial-resistant EHEC in potable water is an important health concern because of the risk of waterborne outbreaks.