Cargando…

Insulin stimulates the tyrosine phosphorylation of caveolin

The specialized plasma membrane structures termed caveolae and the caveolar-coat protein caveolin are highly expressed in insulin- sensitive cells such as adipocytes and muscle. Stimulation of 3T3-L1 adipocytes with insulin significantly increased the tyrosine phosphorylation of caveolin and a 29-kD...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291186/
https://www.ncbi.nlm.nih.gov/pubmed/7540611
_version_ 1782152435999965184
collection PubMed
description The specialized plasma membrane structures termed caveolae and the caveolar-coat protein caveolin are highly expressed in insulin- sensitive cells such as adipocytes and muscle. Stimulation of 3T3-L1 adipocytes with insulin significantly increased the tyrosine phosphorylation of caveolin and a 29-kD caveolin-associated protein in caveolin-enriched Triton-insoluble complexes. Maximal phosphorylation occurred within 5 min, and the levels of phosphorylation remained elevated for at least 30 min. The insulin-dose responses for the tyrosine phosphorylation of caveolin and the 29-kD caveolin-associated protein paralleled those for the phosphorylation of the insulin receptor. The stimulation of caveolin tyrosine phosphorylation was specific for insulin and was not observed with PDGF or EGF, although PDGF stimulated the tyrosine phosphorylation of the 29-kD caveolin- associated protein. Increased tyrosine phosphorylation of caveolin, its associated 29-kD protein, and a 60-kD protein was observed in an in vitro kinase assay after incubation of the caveolin-enriched Triton- insoluble complexes with Mg-ATP, suggesting the presence of an intrinsic tyrosine kinase in these complexes. These fractions contain only trace amounts of the activated insulin receptor. In addition, these complexes contain a 60-kD kinase detected in an in situ gel kinase assay and an approximately 60 kD protein that cross-reacts with an antibody against the Src-family kinase p59Fyn. Thus, the insulin- dependent tyrosine phosphorylation of caveolin represents a novel, insulin-specific signal transduction pathway that may involve activation of a tyrosine kinase downstream of the insulin receptor.
format Text
id pubmed-2291186
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22911862008-05-01 Insulin stimulates the tyrosine phosphorylation of caveolin J Cell Biol Articles The specialized plasma membrane structures termed caveolae and the caveolar-coat protein caveolin are highly expressed in insulin- sensitive cells such as adipocytes and muscle. Stimulation of 3T3-L1 adipocytes with insulin significantly increased the tyrosine phosphorylation of caveolin and a 29-kD caveolin-associated protein in caveolin-enriched Triton-insoluble complexes. Maximal phosphorylation occurred within 5 min, and the levels of phosphorylation remained elevated for at least 30 min. The insulin-dose responses for the tyrosine phosphorylation of caveolin and the 29-kD caveolin-associated protein paralleled those for the phosphorylation of the insulin receptor. The stimulation of caveolin tyrosine phosphorylation was specific for insulin and was not observed with PDGF or EGF, although PDGF stimulated the tyrosine phosphorylation of the 29-kD caveolin- associated protein. Increased tyrosine phosphorylation of caveolin, its associated 29-kD protein, and a 60-kD protein was observed in an in vitro kinase assay after incubation of the caveolin-enriched Triton- insoluble complexes with Mg-ATP, suggesting the presence of an intrinsic tyrosine kinase in these complexes. These fractions contain only trace amounts of the activated insulin receptor. In addition, these complexes contain a 60-kD kinase detected in an in situ gel kinase assay and an approximately 60 kD protein that cross-reacts with an antibody against the Src-family kinase p59Fyn. Thus, the insulin- dependent tyrosine phosphorylation of caveolin represents a novel, insulin-specific signal transduction pathway that may involve activation of a tyrosine kinase downstream of the insulin receptor. The Rockefeller University Press 1995-06-02 /pmc/articles/PMC2291186/ /pubmed/7540611 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Insulin stimulates the tyrosine phosphorylation of caveolin
title Insulin stimulates the tyrosine phosphorylation of caveolin
title_full Insulin stimulates the tyrosine phosphorylation of caveolin
title_fullStr Insulin stimulates the tyrosine phosphorylation of caveolin
title_full_unstemmed Insulin stimulates the tyrosine phosphorylation of caveolin
title_short Insulin stimulates the tyrosine phosphorylation of caveolin
title_sort insulin stimulates the tyrosine phosphorylation of caveolin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291186/
https://www.ncbi.nlm.nih.gov/pubmed/7540611