Cargando…

Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields

BACKGROUND: Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical...

Descripción completa

Detalles Bibliográficos
Autores principales: Cothros, Nicholas, Wong, Jeremy, Gribble, Paul L.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291555/
https://www.ncbi.nlm.nih.gov/pubmed/18431477
http://dx.doi.org/10.1371/journal.pone.0001990
_version_ 1782152460724338688
author Cothros, Nicholas
Wong, Jeremy
Gribble, Paul L.
author_facet Cothros, Nicholas
Wong, Jeremy
Gribble, Paul L.
author_sort Cothros, Nicholas
collection PubMed
description BACKGROUND: Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical framework, interference in force field learning may be the result of static tactile or haptic cues associated with grasp, which fail to indicate changing dynamic conditions. The idea that different haptic cues (e.g. those associated with different grasped objects) signal motor requirements and promote the learning and retention of multiple motor skills has previously been unexplored in the context of force field learning. METHODOLOGY/PRINCIPLE FINDINGS: The present study tested the possibility that interference can be reduced when two different force fields are associated with differently shaped objects grasped in the hand. Human subjects were instructed to guide a cursor to targets while grasping a robotic manipulandum, which applied two opposing velocity-dependent curl fields to the hand. For one group of subjects the manipulandum was fitted with two different handles, one for each force field. No attenuation in interference was observed in these subjects relative to controls who used the same handle for both force fields. CONCLUSIONS/SIGNIFICANCE: These results suggest that in the context of the present learning paradigm, haptic cues on their own are not sufficient to reduce interference and promote learning multiple force fields.
format Text
id pubmed-2291555
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-22915552008-04-23 Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields Cothros, Nicholas Wong, Jeremy Gribble, Paul L. PLoS One Research Article BACKGROUND: Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical framework, interference in force field learning may be the result of static tactile or haptic cues associated with grasp, which fail to indicate changing dynamic conditions. The idea that different haptic cues (e.g. those associated with different grasped objects) signal motor requirements and promote the learning and retention of multiple motor skills has previously been unexplored in the context of force field learning. METHODOLOGY/PRINCIPLE FINDINGS: The present study tested the possibility that interference can be reduced when two different force fields are associated with differently shaped objects grasped in the hand. Human subjects were instructed to guide a cursor to targets while grasping a robotic manipulandum, which applied two opposing velocity-dependent curl fields to the hand. For one group of subjects the manipulandum was fitted with two different handles, one for each force field. No attenuation in interference was observed in these subjects relative to controls who used the same handle for both force fields. CONCLUSIONS/SIGNIFICANCE: These results suggest that in the context of the present learning paradigm, haptic cues on their own are not sufficient to reduce interference and promote learning multiple force fields. Public Library of Science 2008-04-23 /pmc/articles/PMC2291555/ /pubmed/18431477 http://dx.doi.org/10.1371/journal.pone.0001990 Text en Cothros et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Cothros, Nicholas
Wong, Jeremy
Gribble, Paul L.
Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
title Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
title_full Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
title_fullStr Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
title_full_unstemmed Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
title_short Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
title_sort distinct haptic cues do not reduce interference when learning to reach in multiple force fields
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291555/
https://www.ncbi.nlm.nih.gov/pubmed/18431477
http://dx.doi.org/10.1371/journal.pone.0001990
work_keys_str_mv AT cothrosnicholas distincthapticcuesdonotreduceinterferencewhenlearningtoreachinmultipleforcefields
AT wongjeremy distincthapticcuesdonotreduceinterferencewhenlearningtoreachinmultipleforcefields
AT gribblepaull distincthapticcuesdonotreduceinterferencewhenlearningtoreachinmultipleforcefields