Cargando…

Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes

BACKGROUND: Infectious salmon anaemia (ISA) virus (ISAV), which causes ISA in marine-farmed Atlantic salmon, is an orthomyxovirus belonging to the genus Isavirus, family Orthomyxoviridae. ISAV agglutinates erythrocytes of several fish species and it is generally accepted that the ISAV receptor destr...

Descripción completa

Detalles Bibliográficos
Autores principales: Workenhe, Samuel T, Kibenge, Molly JT, Wright, Glenda M, Wadowska, Dorota W, Groman, David B, Kibenge, Frederick SB
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292172/
https://www.ncbi.nlm.nih.gov/pubmed/18307775
http://dx.doi.org/10.1186/1743-422X-5-36
_version_ 1782152476056616960
author Workenhe, Samuel T
Kibenge, Molly JT
Wright, Glenda M
Wadowska, Dorota W
Groman, David B
Kibenge, Frederick SB
author_facet Workenhe, Samuel T
Kibenge, Molly JT
Wright, Glenda M
Wadowska, Dorota W
Groman, David B
Kibenge, Frederick SB
author_sort Workenhe, Samuel T
collection PubMed
description BACKGROUND: Infectious salmon anaemia (ISA) virus (ISAV), which causes ISA in marine-farmed Atlantic salmon, is an orthomyxovirus belonging to the genus Isavirus, family Orthomyxoviridae. ISAV agglutinates erythrocytes of several fish species and it is generally accepted that the ISAV receptor destroying enzyme dissolves this haemagglutination except for Atlantic salmon erythrocytes. Recent work indicates that ISAV isolates that are able to elute from Atlantic salmon erythrocytes cause low mortality in challenge experiments using Atlantic salmon. Previous work on ISAV-induced haemagglutination using the highly pathogenic ISAV strain NBISA01 and the low pathogenic ISAV strain RPC/NB-04-0851, showed endocytosis of NBISA01 but not RPC/NB-04-0851. Real-time RT-PCR was used to assess the viral RNA levels in the ISAV-induced haemagglutination reaction samples, and we observed a slight increase in viral RNA transcripts by 36 hours in the haemagglutination reaction with NBISA01 virus when the experiment was terminated. However, a longer sampling interval was considered necessary to confirm ISAV replication in fish erythrocytes and to determine if the infected cells mounted any innate immune response. This study examined the possible ISAV replication and Type I interferon (IFN) system gene induction in Atlantic salmon erythrocytes following ISAV haemagglutination. RESULTS: Haemagglutination assays were performed using Atlantic salmon erythrocytes and one haemagglutination unit of the two ISAV strains, NBISA01 and RPC/NB-04-0851, of differing genotypes and pathogenicities. Haemagglutination induced by the highly pathogenic NBISA01 but not the low pathogenic RPC/NB-04-0851 resulted in productive infection as evidenced by increased ISAV segment 8 transcripts and increase in the median tissue culture infectious dose (TCID(50)) by 5 days of incubation. Moreover, reverse transcription (RT) quantitative PCR used to compare mRNA levels of key Type I IFN system genes in erythrocyte lysates of haemagglutination reactions with the two ISAV strains showed a higher relative fold increase of IFN-α in NBISA01 haemagglutinations compared to RPC/NB-04-085-1 haemagglutinations (33.0 – 44.26 relative fold increase compared to 11.29). Erythrocytes exposed to heat-inactivated virus or to polyinosinic:polycytidylic acid (polyI:C) or to L-15 medium alone (negative control assays) had minimal late induction (<3.5 relative fold increase) of STAT1 and/or ISG15 and Mx genes, whereas erythrocytes exposed to UV-inactivated virus lacked any cytokine induction. CONCLUSION: ISAV-induced haemagglutination by a highly pathogenic virus strain results in virus uptake and productive infection of Atlantic salmon erythrocytes accompanied by significant induction of IFN-α. This study also highlights the critical role of ISAV strain variation in the initial stages of the virus-cell interaction during haemagglutination, and possibly in the pathogenesis of ISA. Moreover, the study shows for the first time that fish erythrocytes immunologically respond to ISAV infection.
format Text
id pubmed-2292172
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-22921722008-04-11 Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes Workenhe, Samuel T Kibenge, Molly JT Wright, Glenda M Wadowska, Dorota W Groman, David B Kibenge, Frederick SB Virol J Research BACKGROUND: Infectious salmon anaemia (ISA) virus (ISAV), which causes ISA in marine-farmed Atlantic salmon, is an orthomyxovirus belonging to the genus Isavirus, family Orthomyxoviridae. ISAV agglutinates erythrocytes of several fish species and it is generally accepted that the ISAV receptor destroying enzyme dissolves this haemagglutination except for Atlantic salmon erythrocytes. Recent work indicates that ISAV isolates that are able to elute from Atlantic salmon erythrocytes cause low mortality in challenge experiments using Atlantic salmon. Previous work on ISAV-induced haemagglutination using the highly pathogenic ISAV strain NBISA01 and the low pathogenic ISAV strain RPC/NB-04-0851, showed endocytosis of NBISA01 but not RPC/NB-04-0851. Real-time RT-PCR was used to assess the viral RNA levels in the ISAV-induced haemagglutination reaction samples, and we observed a slight increase in viral RNA transcripts by 36 hours in the haemagglutination reaction with NBISA01 virus when the experiment was terminated. However, a longer sampling interval was considered necessary to confirm ISAV replication in fish erythrocytes and to determine if the infected cells mounted any innate immune response. This study examined the possible ISAV replication and Type I interferon (IFN) system gene induction in Atlantic salmon erythrocytes following ISAV haemagglutination. RESULTS: Haemagglutination assays were performed using Atlantic salmon erythrocytes and one haemagglutination unit of the two ISAV strains, NBISA01 and RPC/NB-04-0851, of differing genotypes and pathogenicities. Haemagglutination induced by the highly pathogenic NBISA01 but not the low pathogenic RPC/NB-04-0851 resulted in productive infection as evidenced by increased ISAV segment 8 transcripts and increase in the median tissue culture infectious dose (TCID(50)) by 5 days of incubation. Moreover, reverse transcription (RT) quantitative PCR used to compare mRNA levels of key Type I IFN system genes in erythrocyte lysates of haemagglutination reactions with the two ISAV strains showed a higher relative fold increase of IFN-α in NBISA01 haemagglutinations compared to RPC/NB-04-085-1 haemagglutinations (33.0 – 44.26 relative fold increase compared to 11.29). Erythrocytes exposed to heat-inactivated virus or to polyinosinic:polycytidylic acid (polyI:C) or to L-15 medium alone (negative control assays) had minimal late induction (<3.5 relative fold increase) of STAT1 and/or ISG15 and Mx genes, whereas erythrocytes exposed to UV-inactivated virus lacked any cytokine induction. CONCLUSION: ISAV-induced haemagglutination by a highly pathogenic virus strain results in virus uptake and productive infection of Atlantic salmon erythrocytes accompanied by significant induction of IFN-α. This study also highlights the critical role of ISAV strain variation in the initial stages of the virus-cell interaction during haemagglutination, and possibly in the pathogenesis of ISA. Moreover, the study shows for the first time that fish erythrocytes immunologically respond to ISAV infection. BioMed Central 2008-02-28 /pmc/articles/PMC2292172/ /pubmed/18307775 http://dx.doi.org/10.1186/1743-422X-5-36 Text en Copyright © 2008 Workenhe et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Workenhe, Samuel T
Kibenge, Molly JT
Wright, Glenda M
Wadowska, Dorota W
Groman, David B
Kibenge, Frederick SB
Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes
title Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes
title_full Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes
title_fullStr Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes
title_full_unstemmed Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes
title_short Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes
title_sort infectious salmon anaemia virus replication and induction of alpha interferon in atlantic salmon erythrocytes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292172/
https://www.ncbi.nlm.nih.gov/pubmed/18307775
http://dx.doi.org/10.1186/1743-422X-5-36
work_keys_str_mv AT workenhesamuelt infectioussalmonanaemiavirusreplicationandinductionofalphainterferoninatlanticsalmonerythrocytes
AT kibengemollyjt infectioussalmonanaemiavirusreplicationandinductionofalphainterferoninatlanticsalmonerythrocytes
AT wrightglendam infectioussalmonanaemiavirusreplicationandinductionofalphainterferoninatlanticsalmonerythrocytes
AT wadowskadorotaw infectioussalmonanaemiavirusreplicationandinductionofalphainterferoninatlanticsalmonerythrocytes
AT gromandavidb infectioussalmonanaemiavirusreplicationandinductionofalphainterferoninatlanticsalmonerythrocytes
AT kibengefredericksb infectioussalmonanaemiavirusreplicationandinductionofalphainterferoninatlanticsalmonerythrocytes