Cargando…

Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells

Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI mig...

Descripción completa

Detalles Bibliográficos
Autores principales: van Dijk, A., Niessen, H. W. M., Ursem, W., Twisk, J. W. R., Visser, F. C., van Milligen, F. J.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2295254/
https://www.ncbi.nlm.nih.gov/pubmed/18305959
http://dx.doi.org/10.1007/s00441-008-0573-0
Descripción
Sumario:Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI might positively affect stem cell adhesion and proliferation at the site of injury. Therefore, we investigated the kinetics of attachment and proliferation of adipose-tissue-derived stem cells (ASC) on fibronectin and analysed the time frame and localization of fibronectin accumulation in the human heart after MI. ASCs were seeded onto fibronectin-coated and uncoated culture wells. The numbers of adhering ASC were quantified after various incubation periods (5–30 min) by using DNA quantification assays. The proliferation of ASC was quantified after culturing ASC for various periods (0–9 days) by using DNA assays. Fibronectin accumulation after MI was quantified by immunohistochemical staining of heart sections from 35 patients, after different infarction periods (0–14 days old). We found that ASC attachment and proliferation on fibronectin-coated culture wells was significantly higher than on uncoated wells. Fibronectin deposition was significantly increased from 12 h to 14 days post-infarction, both in the infarction area and in the border-zone, compared with the uninfarcted heart. Our results suggest that a positive effect of fibronectin on stem cells in the heart can only be achieved when stem cell therapy is applied at least 12 h after MI, when the accumulation of fibronectin occurs in the infarcted heart.