Cargando…
Molecular Proximity of Kv1.3 Voltage-gated Potassium Channels and β(1)-Integrins on the Plasma Membrane of Melanoma Cells: Effects of Cell Adherence and Channel Blockers
Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of β1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between don...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2311400/ https://www.ncbi.nlm.nih.gov/pubmed/12084773 http://dx.doi.org/10.1085/jgp.20028607 |
Sumario: | Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of β1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti–β1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity of these membrane molecules is adherence-related. Several K(+) channel blockers, including tetraethylammonium, 4-aminopyridine, and verapamil, inhibited RET between β1-integrins and Kv1.3 channels. However, the irrelevant K(+) channel blocker apamin had no effect on RET between β1-integrins and Kv1.3 channels. Based on these findings, we speculate that the lateral association of Kv1.3 channels with β1-integrins contributes to the regulation of integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of supramolecular structures containing integrins. |
---|