Cargando…
Unsupervised Detection of Suspicious Tissue Using Data Modeling and PCA
Breast cancer is a major cause of death and morbidity among women all over the world, and it is a fact that early detection is a key in improving outcomes. Therefore development of algorithms that aids radiologists in identifying changes in breast tissue early on is essential. In this work an algori...
Autores principales: | Abdel-Qader, Ikhlas, Shen, Lixin, Jacobs, Christina, Abu Amara, Fadi, Pashaie-Rad, Sarah |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324021/ https://www.ncbi.nlm.nih.gov/pubmed/23165041 http://dx.doi.org/10.1155/IJBI/2006/57850 |
Ejemplares similares
-
Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
por: Abu-Amara, Fadi, et al.
Publicado: (2009) -
Bayesian Classifier with Simplified Learning Phase for Detecting Microcalcifications in Digital Mammograms
por: Zyout, Imad, et al.
Publicado: (2009) -
AULD: Large Scale Suspicious DNS Activities Detection via Unsupervised Learning in Advanced Persistent Threats
por: Yan, Guanghua, et al.
Publicado: (2019) -
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge
por: Wagner, Florian
Publicado: (2015) -
Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan
por: Kılıç, Deniz Kenan, et al.
Publicado: (2022)