Cargando…
Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2) (15)O-, and FDG-PET
In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univar...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324050/ https://www.ncbi.nlm.nih.gov/pubmed/23165047 http://dx.doi.org/10.1155/IJBI/2006/79862 |
_version_ | 1782152708365484032 |
---|---|
author | Moeller, James R. Habeck, Christian G. |
author_facet | Moeller, James R. Habeck, Christian G. |
author_sort | Moeller, James R. |
collection | PubMed |
description | In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support. |
format | Text |
id | pubmed-2324050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-23240502008-04-22 Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2) (15)O-, and FDG-PET Moeller, James R. Habeck, Christian G. Int J Biomed Imaging Article In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support. Hindawi Publishing Corporation 2006 2006-12-06 /pmc/articles/PMC2324050/ /pubmed/23165047 http://dx.doi.org/10.1155/IJBI/2006/79862 Text en Copyright © IJBI J. Moeller and C. Habeck https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Moeller, James R. Habeck, Christian G. Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2) (15)O-, and FDG-PET |
title | Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2)
(15)O-, and FDG-PET |
title_full | Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2)
(15)O-, and FDG-PET |
title_fullStr | Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2)
(15)O-, and FDG-PET |
title_full_unstemmed | Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2)
(15)O-, and FDG-PET |
title_short | Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2)
(15)O-, and FDG-PET |
title_sort | reciprocal benefits of mass-univariate and multivariate modeling in brain mapping: applications to event-related functional mri, h(2)
(15)o-, and fdg-pet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324050/ https://www.ncbi.nlm.nih.gov/pubmed/23165047 http://dx.doi.org/10.1155/IJBI/2006/79862 |
work_keys_str_mv | AT moellerjamesr reciprocalbenefitsofmassunivariateandmultivariatemodelinginbrainmappingapplicationstoeventrelatedfunctionalmrih215oandfdgpet AT habeckchristiang reciprocalbenefitsofmassunivariateandmultivariatemodelinginbrainmappingapplicationstoeventrelatedfunctionalmrih215oandfdgpet |