Cargando…
Predicting cancer involvement of genes from heterogeneous data
BACKGROUND: Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize betwee...
Autores principales: | Aragues, Ramon, Sander, Chris, Oliva, Baldo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2330045/ https://www.ncbi.nlm.nih.gov/pubmed/18371197 http://dx.doi.org/10.1186/1471-2105-9-172 |
Ejemplares similares
-
Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions
por: Aragues, Ramon, et al.
Publicado: (2007) -
Biana: a software framework for compiling biological interactions and analyzing networks
por: Garcia-Garcia, Javier, et al.
Publicado: (2010) -
Visualizing Streaming Data
por: Aragues, Anthony
Publicado: (2018) -
An embedded method for gene identification problems involving unwanted data heterogeneity
por: Lu, Meng
Publicado: (2019) -
Topological comparison of methods for predicting transcriptional cooperativity in yeast
por: Aguilar, Daniel, et al.
Publicado: (2008)