Cargando…
Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles
BACKGROUND: Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is req...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2330056/ https://www.ncbi.nlm.nih.gov/pubmed/18402684 http://dx.doi.org/10.1186/1471-2202-9-37 |
_version_ | 1782152782441086976 |
---|---|
author | Cao, Haiyan Zhang, Guo-rong Wang, Xiaodan Kong, Lingxin Geller, Alfred I |
author_facet | Cao, Haiyan Zhang, Guo-rong Wang, Xiaodan Kong, Lingxin Geller, Alfred I |
author_sort | Cao, Haiyan |
collection | PubMed |
description | BACKGROUND: Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) – glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. RESULTS: Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal neuron-specific expression (83 to 93%) compared to either approach alone, and supported long-term (1 month) expression at levels similar to those observed using untargeted gene transfer. CONCLUSION: Targeted gene transfer can be used in combination with neuronal-specific promoters to achieve a high level of nigrostriatal neuron-specific expression. Targeted gene transfer can be followed by long-term expression. Nigrostriatal neuron-specific expression may be useful for specific gene therapy approaches to Parkinson's disease or for genetic analyses of nigrostriatal neuron physiology. |
format | Text |
id | pubmed-2330056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23300562008-04-24 Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles Cao, Haiyan Zhang, Guo-rong Wang, Xiaodan Kong, Lingxin Geller, Alfred I BMC Neurosci Methodology Article BACKGROUND: Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) – glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. RESULTS: Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal neuron-specific expression (83 to 93%) compared to either approach alone, and supported long-term (1 month) expression at levels similar to those observed using untargeted gene transfer. CONCLUSION: Targeted gene transfer can be used in combination with neuronal-specific promoters to achieve a high level of nigrostriatal neuron-specific expression. Targeted gene transfer can be followed by long-term expression. Nigrostriatal neuron-specific expression may be useful for specific gene therapy approaches to Parkinson's disease or for genetic analyses of nigrostriatal neuron physiology. BioMed Central 2008-04-10 /pmc/articles/PMC2330056/ /pubmed/18402684 http://dx.doi.org/10.1186/1471-2202-9-37 Text en Copyright © 2008 Cao et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Cao, Haiyan Zhang, Guo-rong Wang, Xiaodan Kong, Lingxin Geller, Alfred I Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles |
title | Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles |
title_full | Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles |
title_fullStr | Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles |
title_full_unstemmed | Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles |
title_short | Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles |
title_sort | enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free hsv-1 vector particles |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2330056/ https://www.ncbi.nlm.nih.gov/pubmed/18402684 http://dx.doi.org/10.1186/1471-2202-9-37 |
work_keys_str_mv | AT caohaiyan enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles AT zhangguorong enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles AT wangxiaodan enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles AT konglingxin enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles AT gelleralfredi enhancednigrostriatalneuronspecificlongtermexpressionbyusingneuralspecificpromotersincombinationwithtargetedgenetransferbymodifiedhelpervirusfreehsv1vectorparticles |