Cargando…
The use of artificial neural networks to study fatty acids in neuropsychiatric disorders
BACKGROUND: The range of the fatty acids has been largely investigated in the plasma and erythrocytes of patients suffering from neuropsychiatric disorders. In this paper we investigate, for the first time, whether the study of the platelet fatty acids from such patients may be facilitated by means...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2330078/ https://www.ncbi.nlm.nih.gov/pubmed/18433513 http://dx.doi.org/10.1186/1471-244X-8-S1-S3 |
Sumario: | BACKGROUND: The range of the fatty acids has been largely investigated in the plasma and erythrocytes of patients suffering from neuropsychiatric disorders. In this paper we investigate, for the first time, whether the study of the platelet fatty acids from such patients may be facilitated by means of artificial neural networks. METHODS: Venous blood samples were taken from 84 patients with a DSM-IV-TR diagnosis of major depressive disorder and from 60 normal control subjects without a history of clinical depression. Platelet levels of the following 11 fatty acids were analyzed using one-way analysis of variance: C14:0, C16:0, C16:1, C18:0, C18:1 n-9, C18:1 n-7, C18:2 n-6, C18:3 n-3, C20:3 n-3, C20:4 n-6 and C22:6 n-3. The results were then entered into a wide variety of different artificial neural networks. RESULTS: All the artificial neural networks tested gave essentially the same result. However, one type of artificial neural network, the self-organizing map, gave superior information by allowing the results to be described in a two-dimensional plane with potentially informative border areas. A series of repeated and independent self-organizing map simulations, with the input parameters being changed each time, led to the finding that the best discriminant map was that obtained by inclusion of just three fatty acids. CONCLUSION: Our results confirm that artificial neural networks may be used to analyze platelet fatty acids in neuropsychiatric disorder. Furthermore, they show that the self-organizing map, an unsupervised competitive-learning network algorithm which forms a nonlinear projection of a high-dimensional data manifold on a regular, low-dimensional grid, is an optimal type of artificial neural network to use for this task. |
---|