Cargando…

p160/SRC/NCoA coactivators form complexes via specific interaction of their PAS-B domain with the CID/AD1 domain

Transcriptional activation involves the ordered recruitment of coactivators via direct interactions between distinct binding domains and recognition motifs. The p160/SRC/NCoA coactivator family comprises three members (NCoA-1, -2 and -3), which are organized in multiprotein coactivator complexes. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Lodrini, Marco, Münz, Tobias, Coudevylle, Nicolas, Griesinger, Christian, Becker, Stefan, Pfitzner, Edith
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2330239/
https://www.ncbi.nlm.nih.gov/pubmed/18267973
http://dx.doi.org/10.1093/nar/gkn029
Descripción
Sumario:Transcriptional activation involves the ordered recruitment of coactivators via direct interactions between distinct binding domains and recognition motifs. The p160/SRC/NCoA coactivator family comprises three members (NCoA-1, -2 and -3), which are organized in multiprotein coactivator complexes. We had identified the PAS-B domain of NCoA-1 as an LXXLL motif binding domain. Here we show that NCoA family members are able to interact with other full-length NCoA proteins via their PAS-B domain and they specifically interact with the CBP-interaction domain (CID/AD1) of NCoA-1. Peptide competition, binding experiments and mutagenesis of LXXLL motifs point at distinct binding motif specificities of the NCoA PAS-B domains. NMR studies of different NCoA-1-PAS-B/LXXLL peptide complexes revealed similar although not identical binding sites for the CID/AD1 and STAT6 transactivation domain LXXLL motifs. In mechanistic studies, we found that overexpression of the PAS-B domain is able to disturb the binding of NCoA-1 to CBP in cells and that a CID/AD1 peptide competes with STAT6 for NCoA-1 in vitro. Moreover, the expression of an endogenous androgen receptor target gene is affected by the overexpression of the NCoA-1 or NCoA-3 PAS-B domains. Our study discloses a new, complementary mechanism for the current model of coactivator recruitment to target gene promoters.