Cargando…
Construction of networks with intrinsic temporal structure from UK cattle movement data
BACKGROUND: The implementation of national systems for recording the movements of cattle between agricultural holdings in the UK has enabled the development and parameterisation of network-based models for disease spread. These data can be used to form a network in which each cattle-holding location...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335102/ https://www.ncbi.nlm.nih.gov/pubmed/18366700 http://dx.doi.org/10.1186/1746-6148-4-11 |
_version_ | 1782152808641855488 |
---|---|
author | Heath, M Fred Vernon, Matthew C Webb, Cerian R |
author_facet | Heath, M Fred Vernon, Matthew C Webb, Cerian R |
author_sort | Heath, M Fred |
collection | PubMed |
description | BACKGROUND: The implementation of national systems for recording the movements of cattle between agricultural holdings in the UK has enabled the development and parameterisation of network-based models for disease spread. These data can be used to form a network in which each cattle-holding location is represented by a single node and links between nodes are formed if there is a movement of cattle between them in the time period selected. However, this approach loses information on the time sequence of events thus reducing the accuracy of model predictions. In this paper, we propose an alternative way of structuring the data which retains information on the sequence of events but which still enables analysis of the structure of the network. The fundamental feature of this network is that nodes are not individual cattle-holding locations but are instead direct movements between pairs of locations. Links are made between nodes when the second node is a subsequent movement from the location that received the first movement. RESULTS: Two networks are constructed assuming (i) a 7-day and (ii) a 14-day infectious period using British Cattle Movement Service (BCMS) data from 2004 and 2005. During this time period there were 4,183,670 movements that could be derived from the database. In both networks over 98% of the connected nodes formed a single giant weak component. Degree distributions show scale-free behaviour over a limited range only, due to the heterogeneity of locations: farms, markets, shows, abattoirs. Simulation of the spread of disease across the networks demonstrates that this approach to restructuring the data enables efficient comparison of the impact of transmission rates on disease spread. CONCLUSION: The redefinition of what constitutes a node has provided a means to simulate disease spread using all the information available in the BCMS database whilst providing a network that can be described analytically. This will enable the construction of generic networks with similar properties with which to assess the impact of small changes in network structure on disease dynamics. |
format | Text |
id | pubmed-2335102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23351022008-04-25 Construction of networks with intrinsic temporal structure from UK cattle movement data Heath, M Fred Vernon, Matthew C Webb, Cerian R BMC Vet Res Research Article BACKGROUND: The implementation of national systems for recording the movements of cattle between agricultural holdings in the UK has enabled the development and parameterisation of network-based models for disease spread. These data can be used to form a network in which each cattle-holding location is represented by a single node and links between nodes are formed if there is a movement of cattle between them in the time period selected. However, this approach loses information on the time sequence of events thus reducing the accuracy of model predictions. In this paper, we propose an alternative way of structuring the data which retains information on the sequence of events but which still enables analysis of the structure of the network. The fundamental feature of this network is that nodes are not individual cattle-holding locations but are instead direct movements between pairs of locations. Links are made between nodes when the second node is a subsequent movement from the location that received the first movement. RESULTS: Two networks are constructed assuming (i) a 7-day and (ii) a 14-day infectious period using British Cattle Movement Service (BCMS) data from 2004 and 2005. During this time period there were 4,183,670 movements that could be derived from the database. In both networks over 98% of the connected nodes formed a single giant weak component. Degree distributions show scale-free behaviour over a limited range only, due to the heterogeneity of locations: farms, markets, shows, abattoirs. Simulation of the spread of disease across the networks demonstrates that this approach to restructuring the data enables efficient comparison of the impact of transmission rates on disease spread. CONCLUSION: The redefinition of what constitutes a node has provided a means to simulate disease spread using all the information available in the BCMS database whilst providing a network that can be described analytically. This will enable the construction of generic networks with similar properties with which to assess the impact of small changes in network structure on disease dynamics. BioMed Central 2008-03-20 /pmc/articles/PMC2335102/ /pubmed/18366700 http://dx.doi.org/10.1186/1746-6148-4-11 Text en Copyright © 2008 Heath et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Heath, M Fred Vernon, Matthew C Webb, Cerian R Construction of networks with intrinsic temporal structure from UK cattle movement data |
title | Construction of networks with intrinsic temporal structure from UK cattle movement data |
title_full | Construction of networks with intrinsic temporal structure from UK cattle movement data |
title_fullStr | Construction of networks with intrinsic temporal structure from UK cattle movement data |
title_full_unstemmed | Construction of networks with intrinsic temporal structure from UK cattle movement data |
title_short | Construction of networks with intrinsic temporal structure from UK cattle movement data |
title_sort | construction of networks with intrinsic temporal structure from uk cattle movement data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335102/ https://www.ncbi.nlm.nih.gov/pubmed/18366700 http://dx.doi.org/10.1186/1746-6148-4-11 |
work_keys_str_mv | AT heathmfred constructionofnetworkswithintrinsictemporalstructurefromukcattlemovementdata AT vernonmatthewc constructionofnetworkswithintrinsictemporalstructurefromukcattlemovementdata AT webbcerianr constructionofnetworkswithintrinsictemporalstructurefromukcattlemovementdata |