Cargando…
Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset
BACKGROUND: Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions from regulators to re...
Autores principales: | Auliac, Cédric, Frouin, Vincent, Gidrol, Xavier, d'Alché-Buc, Florence |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335304/ https://www.ncbi.nlm.nih.gov/pubmed/18261218 http://dx.doi.org/10.1186/1471-2105-9-91 |
Ejemplares similares
-
Machine Learning in Systems Biology
por: d'Alché-Buc, Florence, et al.
Publicado: (2008) -
Inferring biological networks with output kernel trees
por: Geurts, Pierre, et al.
Publicado: (2007) -
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
por: Lim, Néhémy, et al.
Publicado: (2013) -
Learning a Markov Logic network for supervised gene regulatory network inference
por: Brouard, Céline, et al.
Publicado: (2013) -
Improved Small Molecule Identification through Learning Combinations of Kernel Regression Models
por: Brouard, Céline, et al.
Publicado: (2019)