Cargando…
Building pathway clusters from Random Forests classification using class votes
BACKGROUND: Recent years have seen the development of various pathway-based methods for the analysis of microarray gene expression data. These approaches have the potential to bring biological insights into microarray studies. A variety of methods have been proposed to construct networks using gene...
Autores principales: | Pang, Herbert, Zhao, Hongyu |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335306/ https://www.ncbi.nlm.nih.gov/pubmed/18254968 http://dx.doi.org/10.1186/1471-2105-9-87 |
Ejemplares similares
-
A Jackknife and Voting Classifier Approach to Feature Selection and Classification
por: Taylor, Sandra L., et al.
Publicado: (2011) -
Cluster ensemble based on Random Forests for genetic data
por: Alhusain, Luluah, et al.
Publicado: (2017) -
Gene selection and classification of microarray data using random forest
por: Díaz-Uriarte, Ramón, et al.
Publicado: (2006) -
A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests
por: Xia, Bingbing, et al.
Publicado: (2016) -
A Novel Detection and Multi-Classification Approach for IoT-Malware Using Random Forest Voting of Fine-Tuning Convolutional Neural Networks
por: Atitallah, Safa Ben, et al.
Publicado: (2022)