Cargando…

Structure and Function of Skeletal Muscle in Zebrafish Early Larvae

Zebrafish muscles were examined at an early developmental stage (larvae 5–7 d). Using aluminum clips, preparations (∼1.5 mm length, 150 μm diameter) were mounted for force registration and small angle x-ray diffraction. Sarcomeres were oriented mainly in parallel with the preparation long axis. Elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Dou, Ying, Andersson-Lendahl, Monika, Arner, Anders
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2346565/
https://www.ncbi.nlm.nih.gov/pubmed/18443359
http://dx.doi.org/10.1085/jgp.200809982
_version_ 1782152841423486976
author Dou, Ying
Andersson-Lendahl, Monika
Arner, Anders
author_facet Dou, Ying
Andersson-Lendahl, Monika
Arner, Anders
author_sort Dou, Ying
collection PubMed
description Zebrafish muscles were examined at an early developmental stage (larvae 5–7 d). Using aluminum clips, preparations (∼1.5 mm length, 150 μm diameter) were mounted for force registration and small angle x-ray diffraction. Sarcomeres were oriented mainly in parallel with the preparation long axis. Electrical stimulation elicited fast and reproducible single twitch contractions. Length–force relations showed an optimal sarcomere length of 2.15 μm. x-ray diffraction revealed clear equatorial 1.1/1.0 reflections, showing that myofilaments are predominantly arranged along the preparation long axis. In contrast, reflections from older (2 mo) zebrafish showed two main filament orientations each at an ∼25° angle relative to the preparation long axis. Electrical stimulation of larvae muscles increased the 1.1/1.0 intensity ratio, reflecting mass transfer to thin filaments during contraction. The apparent lattice volume was 3.42 × 10(−3) μm(3), which is smaller than that of mammalian striated muscle and more similar to that of frog muscles. The relation between force and stimulation frequency showed fusion of responses at a comparatively high frequency (∼186 Hz), reflecting a fast muscle phenotype. Inhibition of fast myosin with N-benzyl-p-toluene sulphonamide (BTS) showed that the later phase of the tetanus was less affected than the initial peak. This suggests that, although the main contractile phenotype is fast, slow twitch fibers can contribute to sustained contraction. A fatigue stimulation protocol with repeated 220 ms/186 Hz tetani showed that tetanic force decreased to 50% at a train rate of 0.1 s(−1). In conclusion, zebrafish larvae muscles can be examined in vitro using mechanical and x-ray methods. The muscles and myofilaments are mainly orientated in parallel with the larvae long axis and exhibit a significant fast contractile component. Sustained contractions can also involve a small contribution from slower muscle types.
format Text
id pubmed-2346565
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-23465652008-11-01 Structure and Function of Skeletal Muscle in Zebrafish Early Larvae Dou, Ying Andersson-Lendahl, Monika Arner, Anders J Gen Physiol Articles Zebrafish muscles were examined at an early developmental stage (larvae 5–7 d). Using aluminum clips, preparations (∼1.5 mm length, 150 μm diameter) were mounted for force registration and small angle x-ray diffraction. Sarcomeres were oriented mainly in parallel with the preparation long axis. Electrical stimulation elicited fast and reproducible single twitch contractions. Length–force relations showed an optimal sarcomere length of 2.15 μm. x-ray diffraction revealed clear equatorial 1.1/1.0 reflections, showing that myofilaments are predominantly arranged along the preparation long axis. In contrast, reflections from older (2 mo) zebrafish showed two main filament orientations each at an ∼25° angle relative to the preparation long axis. Electrical stimulation of larvae muscles increased the 1.1/1.0 intensity ratio, reflecting mass transfer to thin filaments during contraction. The apparent lattice volume was 3.42 × 10(−3) μm(3), which is smaller than that of mammalian striated muscle and more similar to that of frog muscles. The relation between force and stimulation frequency showed fusion of responses at a comparatively high frequency (∼186 Hz), reflecting a fast muscle phenotype. Inhibition of fast myosin with N-benzyl-p-toluene sulphonamide (BTS) showed that the later phase of the tetanus was less affected than the initial peak. This suggests that, although the main contractile phenotype is fast, slow twitch fibers can contribute to sustained contraction. A fatigue stimulation protocol with repeated 220 ms/186 Hz tetani showed that tetanic force decreased to 50% at a train rate of 0.1 s(−1). In conclusion, zebrafish larvae muscles can be examined in vitro using mechanical and x-ray methods. The muscles and myofilaments are mainly orientated in parallel with the larvae long axis and exhibit a significant fast contractile component. Sustained contractions can also involve a small contribution from slower muscle types. The Rockefeller University Press 2008-05 /pmc/articles/PMC2346565/ /pubmed/18443359 http://dx.doi.org/10.1085/jgp.200809982 Text en © 2008 Dou et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jgp.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Articles
Dou, Ying
Andersson-Lendahl, Monika
Arner, Anders
Structure and Function of Skeletal Muscle in Zebrafish Early Larvae
title Structure and Function of Skeletal Muscle in Zebrafish Early Larvae
title_full Structure and Function of Skeletal Muscle in Zebrafish Early Larvae
title_fullStr Structure and Function of Skeletal Muscle in Zebrafish Early Larvae
title_full_unstemmed Structure and Function of Skeletal Muscle in Zebrafish Early Larvae
title_short Structure and Function of Skeletal Muscle in Zebrafish Early Larvae
title_sort structure and function of skeletal muscle in zebrafish early larvae
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2346565/
https://www.ncbi.nlm.nih.gov/pubmed/18443359
http://dx.doi.org/10.1085/jgp.200809982
work_keys_str_mv AT douying structureandfunctionofskeletalmuscleinzebrafishearlylarvae
AT anderssonlendahlmonika structureandfunctionofskeletalmuscleinzebrafishearlylarvae
AT arneranders structureandfunctionofskeletalmuscleinzebrafishearlylarvae