Cargando…

Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays

Genome-wide association (GWA) studies to map genes for complex traits are powerful yet costly. DNA-pooling strategies have the potential to dramatically reduce the cost of GWA studies. Pooling using Affymetrix arrays has been proposed and used but the efficiency of these arrays has not been quantifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Macgregor, Stuart, Zhao, Zhen Zhen, Henders, Anjali, Nicholas, Martin G., Montgomery, Grant W., Visscher, Peter M.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2346606/
https://www.ncbi.nlm.nih.gov/pubmed/18276640
http://dx.doi.org/10.1093/nar/gkm1060
Descripción
Sumario:Genome-wide association (GWA) studies to map genes for complex traits are powerful yet costly. DNA-pooling strategies have the potential to dramatically reduce the cost of GWA studies. Pooling using Affymetrix arrays has been proposed and used but the efficiency of these arrays has not been quantified. We compared and contrasted Affymetrix Genechip HindIII and Illumina HumanHap300 arrays on the same DNA pools and showed that the HumanHap300 arrays are substantially more efficient. In terms of effective sample size, HumanHap300-based pooling extracts >80% of the information available with individual genotyping (IG). In contrast, Genechip HindIII-based pooling only extracts ∼30% of the available information. With HumanHap300 arrays concordance with IG data is excellent. Guidance is given on best study design and it is shown that even after taking into account pooling error, one stage scans can be performed for >100-fold reduced cost compared with IG. With appropriately designed two stage studies, IG can provide confirmation of pooling results whilst still providing ∼20-fold reduction in total cost compared with IG-based alternatives. The large cost savings with Illumina HumanHap300-based pooling imply that future studies need only be limited by the availability of samples and not cost.