Cargando…
Gene Ontology density estimation and discourse analysis for automatic GeneRiF extraction
BACKGROUND: This paper describes and evaluates a sentence selection engine that extracts a GeneRiF (Gene Reference into Functions) as defined in ENTREZ-Gene based on a MEDLINE record. Inputs for this task include both a gene and a pointer to a MEDLINE reference. In the suggested approach we merge tw...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2352866/ https://www.ncbi.nlm.nih.gov/pubmed/18426554 http://dx.doi.org/10.1186/1471-2105-9-S3-S9 |
Sumario: | BACKGROUND: This paper describes and evaluates a sentence selection engine that extracts a GeneRiF (Gene Reference into Functions) as defined in ENTREZ-Gene based on a MEDLINE record. Inputs for this task include both a gene and a pointer to a MEDLINE reference. In the suggested approach we merge two independent sentence extraction strategies. The first proposed strategy (LASt) uses argumentative features, inspired by discourse-analysis models. The second extraction scheme (GOEx) uses an automatic text categorizer to estimate the density of Gene Ontology categories in every sentence; thus providing a full ranking of all possible candidate GeneRiFs. A combination of the two approaches is proposed, which also aims at reducing the size of the selected segment by filtering out non-content bearing rhetorical phrases. RESULTS: Based on the TREC-2003 Genomics collection for GeneRiF identification, the LASt extraction strategy is already competitive (52.78%). When used in a combined approach, the extraction task clearly shows improvement, achieving a Dice score of over 57% (+10%). CONCLUSIONS: Argumentative representation levels and conceptual density estimation using Gene Ontology contents appear complementary for functional annotation in proteomics. |
---|