Cargando…

Bayesian Functional Data Clustering for Temporal Microarray Data

We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the cluster number automatically based on the Bayesian infor...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Ping, Zhong, Wenxuan, Feng, Yang, Liu, Jun S.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358942/
https://www.ncbi.nlm.nih.gov/pubmed/18464908
http://dx.doi.org/10.1155/2008/231897
Descripción
Sumario:We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the cluster number automatically based on the Bayesian information criterion, and handle missing data easily. When applied to a microarray dataset on the budding yeast, our clustering algorithm provides biologically meaningful gene clusters according to a functional enrichment analysis.