Cargando…
Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes
BACKGROUND: The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. In cases of multiple resistance, these dynamics will also depend on how individual resistance...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359736/ https://www.ncbi.nlm.nih.gov/pubmed/18397515 http://dx.doi.org/10.1186/1471-2148-8-104 |
Sumario: | BACKGROUND: The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. In cases of multiple resistance, these dynamics will also depend on how individual resistance mutations interact with one another, and on the xenobiotics applied against them. We compared Culex quinquefasciatus mosquitoes harbouring two resistance alleles ace-1(R )and Kdr(R )(conferring resistance to carbamate and pyrethroid insecticides, respectively) to mosquitoes bearing only one of the alleles, or neither allele. Comparisons were made in environments where both, only one, or neither type of insecticide was present. RESULTS: Each resistance allele was associated with fitness costs (survival to adulthood) in an insecticide-free environment, with the costs of ace-1(R )being greater than for Kdr(R). However, there was a notable interaction in that the costs of harbouring both alleles were significantly less than for harbouring ace-1(R )alone. The two insecticides combined in an additive, synergistic and antagonistic manner depending on a mosquito's resistance status, but were not predictable based on the presence/absence of either, or both mutations. CONCLUSION: Insecticide resistance mutations interacted to positively or negatively influence a mosquito's fitness, both in the presence or absence of insecticides. In particular, the presence of the Kdr(R )mutation compensated for the costs of the ace-1(R )mutation in an insecticide-free environment, suggesting the strength of selection in untreated areas would be less against mosquitoes resistant to both insecticides than for those resistant to carbamates alone. Additional interactions suggest the dynamics of resistance will be difficult to predict in populations where multiple resistance mutations are present or that are subject to treatment by different xenobiotics. |
---|