Cargando…
FADD phosphorylation is critical for cell cycle regulation in breast cancer cells
Anti-oestrogen therapy is effective for control of hormone receptor-positive breast cancers, although the detailed molecular mechanisms, including signal transduction, remain unclear. We demonstrated here that long-term tamoxifen treatment causes G2/M cell cycle arrest through c-jun N-terminal kinas...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361184/ https://www.ncbi.nlm.nih.gov/pubmed/16450001 http://dx.doi.org/10.1038/sj.bjc.6602955 |
Sumario: | Anti-oestrogen therapy is effective for control of hormone receptor-positive breast cancers, although the detailed molecular mechanisms, including signal transduction, remain unclear. We demonstrated here that long-term tamoxifen treatment causes G2/M cell cycle arrest through c-jun N-terminal kinase (JNK) activation, which is dependent on phosphorylation of Fas-associated death domain-containing protein (FADD) at 194 serine in an oestrogen (ER) receptor-positive breast cancer cell line, MCF-7. Expression of a dominant negative mutant form of MKK7, a kinase upstream of JNK, or mutant FADD (S194A) in MCF-7 cells suppressed the cytotoxicity of long-term tamoxifen treatment. Of great interest, similar signallings could be evoked by paclitaxel, even in an ER-negative cell line, MDA-MB-231. In addition, immunohistochemical analysis using human breast cancer specimens showed a close correlation between phosphorylated JNK and FADD expression, both being significantly reduced in cases with metastatic potential. We conclude that JNK-mediated phosphorylation of FADD plays an important role in the negative regulation of cell growth and metastasis, independent of the ER status of a breast cancer, so that JNK/FADD signals might be promising targets for cancer therapy. |
---|