Cargando…

The LLP risk model: an individual risk prediction model for lung cancer

Using a model-based approach, we estimated the probability that an individual, with a specified combination of risk factors, would develop lung cancer within a 5-year period. Data from 579 lung cancer cases and 1157 age- and sex-matched population-based controls were available for this analysis. Sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Cassidy, A, Myles, J P, van Tongeren, M, Page, R D, Liloglou, T, Duffy, S W, Field, J K
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361453/
https://www.ncbi.nlm.nih.gov/pubmed/18087271
http://dx.doi.org/10.1038/sj.bjc.6604158
Descripción
Sumario:Using a model-based approach, we estimated the probability that an individual, with a specified combination of risk factors, would develop lung cancer within a 5-year period. Data from 579 lung cancer cases and 1157 age- and sex-matched population-based controls were available for this analysis. Significant risk factors were fitted into multivariate conditional logistic regression models. The final multivariate model was combined with age-standardised lung cancer incidence data to calculate absolute risk estimates. Combinations of lifestyle risk factors were modelled to create risk profiles. For example, a 77-year-old male non-smoker, with a family history of lung cancer (early onset) and occupational exposure to asbestos has an absolute risk of 3.17% (95% CI, 1.67–5.95). Choosing a 2.5% cutoff to trigger increased surveillance, gave a sensitivity of 0.62 and specificity of 0.70, while a 6.0% cutoff gave a sensitivity of 0.34 and specificity of 0.90. A 10-fold cross validation produced an AUC statistic of 0.70, indicating good discrimination. If independent validation studies confirm these results, the LLP risk models’ application as the first stage in an early detection strategy is a logical evolution in patient care.