Cargando…

Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances associated with loss of chromosome 3

Defining regions of genomic imbalance can identify genes involved in tumour development. Conventional cytogenetics has identified several nonrandom copy number alterations (CNA) in uveal melanomas (UVM), which include monosomy 3, chromosome 6 abnormalities and gain of 8q. To gain further insight int...

Descripción completa

Detalles Bibliográficos
Autores principales: Hughes, S, Damato, B E, Giddings, I, Hiscott, P S, Humphreys, J, Houlston, R S
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361503/
https://www.ncbi.nlm.nih.gov/pubmed/16251874
http://dx.doi.org/10.1038/sj.bjc.6602834
Descripción
Sumario:Defining regions of genomic imbalance can identify genes involved in tumour development. Conventional cytogenetics has identified several nonrandom copy number alterations (CNA) in uveal melanomas (UVM), which include monosomy 3, chromosome 6 abnormalities and gain of 8q. To gain further insight into the CNAs and define the regions involved more precisely we analysed 18 primary UVMs using 1 Mb BAC microarray comparative genomic hybridisation (CGH). Our analysis showed that the most common genomic imbalances were 8q gain (78%), 6p gain (67%) and monosomy 3 (56%). Two distinct CGH profiles could be delineated on the basis of the chromosome 3 status. The most common genetic changes in monosomy 3 tumours, in our study, were gain of 8q11.21–q24.3, 6p25.1–p21.2, 21q21.2–q21.3 and 21q22.13–q22.3 and loss of 1p36.33–p34.3, 1p31.1–p21.2, 6q16.2–q25.3 and 8p23.3–p11.23. In contrast, disomy 3 tumours showed recurrent gains of only 6p25.3–p22.3 and 8q23.2–q24.3. Our approach allowed definition of the smallest overlapping regions of imbalance, which may be important in the development of UVM.