Cargando…

‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression

Although it is generally accepted that proteolytic degradation is an important mechanism used by malignant cells in the process of metastasis, comparatively little is known about the regulation of molecules responsible for proteolysis and how they become de-regulated during human tumour progression....

Descripción completa

Detalles Bibliográficos
Autores principales: MacDougall, J R, Bani, M R, Lin, Y, Muschel, R J, Kerbel, R S
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362325/
https://www.ncbi.nlm.nih.gov/pubmed/10408860
http://dx.doi.org/10.1038/sj.bjc.6690385
_version_ 1782153429878046720
author MacDougall, J R
Bani, M R
Lin, Y
Muschel, R J
Kerbel, R S
author_facet MacDougall, J R
Bani, M R
Lin, Y
Muschel, R J
Kerbel, R S
author_sort MacDougall, J R
collection PubMed
description Although it is generally accepted that proteolytic degradation is an important mechanism used by malignant cells in the process of metastasis, comparatively little is known about the regulation of molecules responsible for proteolysis and how they become de-regulated during human tumour progression. Using a genetically related pair of human melanoma cell lines, derived from the same patient at different stages of disease, we analysed differences in the cytokine-mediated regulation of gelatinase B (MMP-9), an enzyme thought to play an important role in cellular invasiveness, and TIMP-1, a physiological inhibitor of this enzyme. Whereas the advanced stage (i.e. metastatic) partner of this pair (WM 239) could produce gelatinase B upon induction with interleukin (IL)-1β or tumour necrosis factor alpha (TNF-α), the early stage (i.e. primary) partner (WM 115) could not. In sharp contrast, we found that TIMP-1 displayed an opposite pattern of induction in these cell lines. Specifically, the early stage cell line, WM 115, demonstrated a marked increase in the production of TIMP-1 when treated with IL-1β or TNF-α whereas the advanced cell line, WM 239, showed no such increase. Treatment with the DNA demethylating agent, 2-deoxy-5-azacytidine, resulted in a marked up-regulation of both gelatinase B and TIMP-1 in both cell lines. It was further found that constitutive overexpression of gelatinase B in WM 239 cells and an additional melanoma cell line (MeWo), derived from a metastatic lesion, was able to greatly enhance lung colonization in an experimental metastasis assay while we did not observe differences in tumorigenicity. From these results we conclude that an altered responsiveness of gelatinase B and TIMP-1 to induction by similar agents is associated with disease progression in human melanoma and that this altered responsiveness can have consequences to the aggressive nature of the disease. © 1999 Cancer Research Campaign
format Text
id pubmed-2362325
institution National Center for Biotechnology Information
language English
publishDate 1999
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-23623252009-09-10 ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression MacDougall, J R Bani, M R Lin, Y Muschel, R J Kerbel, R S Br J Cancer Regular Article Although it is generally accepted that proteolytic degradation is an important mechanism used by malignant cells in the process of metastasis, comparatively little is known about the regulation of molecules responsible for proteolysis and how they become de-regulated during human tumour progression. Using a genetically related pair of human melanoma cell lines, derived from the same patient at different stages of disease, we analysed differences in the cytokine-mediated regulation of gelatinase B (MMP-9), an enzyme thought to play an important role in cellular invasiveness, and TIMP-1, a physiological inhibitor of this enzyme. Whereas the advanced stage (i.e. metastatic) partner of this pair (WM 239) could produce gelatinase B upon induction with interleukin (IL)-1β or tumour necrosis factor alpha (TNF-α), the early stage (i.e. primary) partner (WM 115) could not. In sharp contrast, we found that TIMP-1 displayed an opposite pattern of induction in these cell lines. Specifically, the early stage cell line, WM 115, demonstrated a marked increase in the production of TIMP-1 when treated with IL-1β or TNF-α whereas the advanced cell line, WM 239, showed no such increase. Treatment with the DNA demethylating agent, 2-deoxy-5-azacytidine, resulted in a marked up-regulation of both gelatinase B and TIMP-1 in both cell lines. It was further found that constitutive overexpression of gelatinase B in WM 239 cells and an additional melanoma cell line (MeWo), derived from a metastatic lesion, was able to greatly enhance lung colonization in an experimental metastasis assay while we did not observe differences in tumorigenicity. From these results we conclude that an altered responsiveness of gelatinase B and TIMP-1 to induction by similar agents is associated with disease progression in human melanoma and that this altered responsiveness can have consequences to the aggressive nature of the disease. © 1999 Cancer Research Campaign Nature Publishing Group 1999-05 1999-05-01 /pmc/articles/PMC2362325/ /pubmed/10408860 http://dx.doi.org/10.1038/sj.bjc.6690385 Text en Copyright © 1999 Cancer Research Campaign https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
spellingShingle Regular Article
MacDougall, J R
Bani, M R
Lin, Y
Muschel, R J
Kerbel, R S
‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression
title ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression
title_full ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression
title_fullStr ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression
title_full_unstemmed ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression
title_short ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression
title_sort ‘proteolytic switching’: opposite patterns of regulation of gelatinase b and its inhibitor timp-1 during human melanoma progression and consequences of gelatinase b overexpression
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362325/
https://www.ncbi.nlm.nih.gov/pubmed/10408860
http://dx.doi.org/10.1038/sj.bjc.6690385
work_keys_str_mv AT macdougalljr proteolyticswitchingoppositepatternsofregulationofgelatinasebanditsinhibitortimp1duringhumanmelanomaprogressionandconsequencesofgelatinaseboverexpression
AT banimr proteolyticswitchingoppositepatternsofregulationofgelatinasebanditsinhibitortimp1duringhumanmelanomaprogressionandconsequencesofgelatinaseboverexpression
AT liny proteolyticswitchingoppositepatternsofregulationofgelatinasebanditsinhibitortimp1duringhumanmelanomaprogressionandconsequencesofgelatinaseboverexpression
AT muschelrj proteolyticswitchingoppositepatternsofregulationofgelatinasebanditsinhibitortimp1duringhumanmelanomaprogressionandconsequencesofgelatinaseboverexpression
AT kerbelrs proteolyticswitchingoppositepatternsofregulationofgelatinasebanditsinhibitortimp1duringhumanmelanomaprogressionandconsequencesofgelatinaseboverexpression