Cargando…
Cytotoxic response of ovarian cancer cell lines to IFN-γ is associated with sustained induction of IRF-1 and p21 mRNA
Intereferon-γ (IFN-γ) has some anti-tumour activity in human ovarian cancer. This cytokine inhibited proliferation in three of four ovarian cancer cell lines in vitro. We then compared the action of IFN-γ in two cell lines, one sensitive and one resistant to its growth inhibitory effects. IFN-γ sign...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362378/ https://www.ncbi.nlm.nih.gov/pubmed/10376977 http://dx.doi.org/10.1038/sj.bjc.6690491 |
Sumario: | Intereferon-γ (IFN-γ) has some anti-tumour activity in human ovarian cancer. This cytokine inhibited proliferation in three of four ovarian cancer cell lines in vitro. We then compared the action of IFN-γ in two cell lines, one sensitive and one resistant to its growth inhibitory effects. IFN-γ signalling appeared normal in both cell lines, with stat1 DNA binding activity detectable at 30 min. Continuous exposure to IFN-γ for 2–3 days was necessary for an irreversible effect on cell growth and apoptosis in cells sensitive to growth inhibition. During this time there was an increase in mRNA for the CKI p21, but no alterations in mRNA levels for other members of the CKI family. Maintenance of p21 mRNA required continuous mRNA synthesis. mRNA for the transcription factor IRF-1 was also induced in growth inhibited cells with similar kinetics to those observed for p21. Maximal induction of both p21 and IRF-1 mRNA was observed after 2–3 days IFN-γ exposure as the cells became committed to cell death. There was also a rapid increase in p21 and IRF-1 mRNA in cells resistant to the growth inhibitory effects of IFN-γ, but this increase was not maintained. Thus, continuous interaction with the IFN-γ receptor, together with a sustained induction of p21 and IRF-1, is associated with growth inhibitory and apoptotic effects of IFN-γ in ovarian cancer cells. © 1999 Cancer Research Campaign |
---|