Cargando…

Effects of bryostatin-1 on chronic myeloid leukaemia-derived haematopoietic progenitors

Bryostatin-1 belongs to the family of macrocyclic lactones isolated from the marine bryozoan Bugula neritina and is a potent activator of protein kinase C (PKC). Bryostatin has been demonstrated to possess both in vivo and in vitro anti-leukaemic potential. In samples derived from chronic myeloid le...

Descripción completa

Detalles Bibliográficos
Autores principales: Thijsen, S F T, Schuurhuis, G J, Oostveen, J W van, Theijsmeijer, A P, van der Hem, K G, Odding, J H, Dräger, A M, Ossenkoppele, G J
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362710/
https://www.ncbi.nlm.nih.gov/pubmed/10188883
http://dx.doi.org/10.1038/sj.bjc.6690225
Descripción
Sumario:Bryostatin-1 belongs to the family of macrocyclic lactones isolated from the marine bryozoan Bugula neritina and is a potent activator of protein kinase C (PKC). Bryostatin has been demonstrated to possess both in vivo and in vitro anti-leukaemic potential. In samples derived from chronic myeloid leukaemia (CML) patients, it has been demonstrated that bryostatin-1 induces a macrophage differentiation, suppresses colony growth in vitro and promotes cytokine secretion from accessory cells. We investigated the effect of bryostatin-1 treatment on colony-forming unit–granulocyte macrophage (CFU–GM) capacity in the presence of accessory cells, using mononuclear cells, as well as in the absence of accessory cells using purified CD34-positive cells. Cells were obtained from 14 CML patients as well as from nine controls. Moreover, CD34-positive cells derived from CML samples and controls were analysed for stem cell frequency and ability using the long-term culture initiating cell (LTCIC) assay at limiting dilution. Individual colonies derived from both the CFU–GM and LTCIC assays were analysed for the presence of the bcr–abl gene with fluorescence in situ hybridization (FISH) to evaluate inhibition of malignant colony growth. The results show that at the CFU–GM level bryostatin-1 treatment resulted in only a 1.4-fold higher reduction of CML colony growth as compared to the control samples, both in the presence and in the absence of accessory cells. However, at the LTCIC level a sixfold higher reduction of CML growth was observed as compared to the control samples. Analysis of the LTCICs at limiting dilution indicates that this purging effect is caused by a decrease in output per malignant LTCIC combined with an increase in the normal stem cell frequency. It is concluded that bryostatin-1 selectively inhibits CML growth at the LTCIC level and should be explored as a purging modality in CML. © 1999 Cancer Research Campaign